kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evidence of quasiequilibrium in pressure-gradient turbulent boundary layers
Illinois Tech IIT, Chicago, IL 60616 USA..
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0001-6570-5499
Illinois Tech IIT, Chicago, IL 60616 USA..
2024 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 987, article id R8Article in journal (Refereed) Published
Abstract [en]

Two sets of measurements utilizing hot-wire anemometry and oil-film interferometry for flat-plate turbulent boundary layers, exposed to various controlled adverse and favourable pressure gradients, are used to evaluate history effects of the imposed and varying free-stream gradients. The results are from the NDF wind tunnel at Illinois Tech (IIT) and the MTL wind tunnel at KTH, over the range 800 < Re-tau <22000 (where Re-tau is the friction Reynolds number). The streamwise pressure-gradient parameter beta equivalent to (-& ell;/tau(w))& sdot;(partial derivative P-e/partial derivative x) varied between -2 < beta < 7, where & ell; is an outer length scale for boundary layers equivalent to the half-height of channel flow and the radius of pipe flow, and is estimated for each boundary-layer profile; note that tau(w) is the wall-shear stress and P-e is the free-stream static pressure. Extracting from each profile the three parameters of the overlap region, following the recent work of Monkewitz & Nagib (J. Fluid Mech., vol. 967, 2023, p. A15) that led to an overlap region of combined logarithmic and linear parts, we find minimum history effects in the overlap region. Thus, the overlap region in this range of pressure-gradient boundary layers appears to be in 'quasiequilibrium'.

Place, publisher, year, edition, pages
Cambridge University Press (CUP) , 2024. Vol. 987, article id R8
Keywords [en]
turbulent boundary layers, boundary layer structure, turbulence theory
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-347169DOI: 10.1017/jfm.2024.440ISI: 001227934300001Scopus ID: 2-s2.0-85194000148OAI: oai:DiVA.org:kth-347169DiVA, id: diva2:1864425
Note

QC 20240603

Available from: 2024-06-03 Created: 2024-06-03 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Vinuesa, Ricardo

Search in DiVA

By author/editor
Vinuesa, Ricardo
By organisation
Engineering MechanicsLinné Flow Center, FLOW
In the same journal
Journal of Fluid Mechanics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf