kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficient Large-Scale Many-Body Quantum Dynamics via Local-Information Time Evolution
KTH, School of Engineering Sciences (SCI), Physics, Condensed Matter Theory.ORCID iD: 0000-0002-0141-1878
KTH, School of Engineering Sciences (SCI), Physics, Condensed Matter Theory.ORCID iD: 0000-0002-6750-3265
KTH, School of Engineering Sciences (SCI), Physics, Condensed Matter Theory.ORCID iD: 0009-0008-8177-9218
KTH, School of Engineering Sciences (SCI), Physics, Condensed Matter Theory.ORCID iD: 0000-0001-7399-9618
Show others and affiliations
2024 (English)In: PRX Quantum, E-ISSN 2691-3399, Vol. 5, no 2, article id 020352Article in journal (Refereed) Published
Abstract [en]

During time evolution of many-body systems entanglement grows rapidly, limiting exact simulations to small-scale systems or small timescales. Quantum information tends, however, to flow towards larger scales without returning to local scales, such that its detailed large-scale structure does not directly affect local observables. This allows for the removal of large-scale quantum information in a way that preserves all local observables and gives access to large-scale and large-time quantum dynamics. To this end, we use the recently introduced information lattice to organize quantum information into different scales, allowing us to define local information and information currents that we employ to systematically discard long-range quantum correlations in a controlled way. Our approach relies on decomposing the system into subsystems up to a maximum scale and time evolving the subsystem density matrices by solving the subsystem von Neumann equations in parallel. Importantly, the information flow needs to be preserved during the discarding of large-scale information. To achieve this without the need to make assumptions about the microscopic details of the information current, we introduce a second scale at which information is discarded, while using the state at the maximum scale to accurately obtain the information flow. The resulting algorithm, which we call local-information time evolution, is highly versatile and suitable for investigating many-body quantum dynamics in both closed and open quantum systems with diverse hydrodynamic behaviors. We present results for the energy transport in the mixed-field Ising model and the magnetization transport in the XX spin chain with onsite dephasing where we accurately determine the power-law exponent and the diffusion coefficients. Furthermore, the information lattice framework employed here promises to offer insightful results about the spatial and temporal behavior of entanglement in many-body systems.

Place, publisher, year, edition, pages
American Physical Society (APS) , 2024. Vol. 5, no 2, article id 020352
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-347616DOI: 10.1103/PRXQuantum.5.020352ISI: 001263233400001Scopus ID: 2-s2.0-85195238530OAI: oai:DiVA.org:kth-347616DiVA, id: diva2:1869211
Note

QC 20240613

Available from: 2024-06-12 Created: 2024-06-12 Last updated: 2024-11-21Bibliographically approved
In thesis
1. Thermalization and Localization: Novel Perspectives from Random Circuits and the Information Lattice
Open this publication in new window or tab >>Thermalization and Localization: Novel Perspectives from Random Circuits and the Information Lattice
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A many-body quantum system has the potential for entanglement between its subsystems---a form of correlation that has no equivalent in classical physics. A key feature of a many-body quantum system is the potential for entanglement between its subsystems---a form of correlation that has no equivalent in classical physics. Due to entanglement, the calculation of quantum mechanical processes generally requires resources that grow exponentially with the system size. This prevents exact simulations of generic interacting quantum systems for large system sizes and long timescales on classical computers, which leaves many questions open in this domain.

In this thesis, we investigate thermalization and localization in closed quantum systems, which are processes in which entanglement either proliferates or is exponentially suppressed. In both cases, we can make progress on classical computers by systematically discarding non-essential entanglement information to obtain approximate results that are nevertheless meaningful. We present several algorithms that follow this principle, some of which we developed from the ground up, while others improve upon existing methods.

We employ the recently developed information lattice---a spatially hierarchical decomposition of the quantum information in a state---to track the location of information over time and space, supplementing conventional measures based on the entanglement entropy. The information lattice underpins our Local Information Time Evolution (LITE) algorithm, which continually separates and discards large scale thermal information as it arises, from the local information that is relevant for physical observables. It also sheds light on the Density Matrix Renormalization Group (DMRG) algorithm, aiding our efforts to improve the convergence process when calculating highly excited states. Furthermore, we use the information lattice as the basis for a new universal characterization of quantum matter, whether thermal or localized. 

Finally, we introduce a random circuit model of interacting local integrals of motion (l-bits), to simulate the dynamics of effective quantum systems that are localized by definition. We use this model to investigate whether slow particle transport can exist in localized systems. Since the prevailing belief has been that slow particle transport is impossible in localized systems, recent numerical evidence of such transport sparked a debate as to whether localization can exist as a macroscopic phenomenon. By reproducing those results with our model, we show that the observation of slow particle transport is not sufficient to rule out the existence of localization.

Abstract [sv]

Ett kvantmekaniskt mångpartikelsystem har potential för sammanflätning mellan dess delsystem---en form av korrelation som inte har någon motsvarighet i klassisk fysik. På grund av sammanflätning kräver beräkningen av kvantmekaniska processer i allmänhet resurser som växer exponentiellt med systemets storlek. Detta förhindrar exakta simuleringar av generiska interagerande kvantsystem för stora systemstorlekar och långa tidsperioder på klassiska datorer, vilket gör att många frågor är obsevarade inom detta område.

I denna avhandling undersöker vi termalisering och lokalisering i slutna kvantsystem, vilka är processer där sammanflätningen antingen sprids eller begränsas exponentiellt. I båda fallen kan vi göra framsteg på klassiska datorer genom att systematiskt bortse från icke-väsentlig sammanflätningsinformation för att erhålla approximativa, men ändå meningsfulla, resultat. Vi presenterar flera algoritmer som följer denna princip: vissa har vi utvecklat från grunden, medan andra förbättrar befintliga metoder.

Vi använder det nyligen utvecklade informationsgittret---en hierarkisk rumslig uppdelning av kvantinformationen i ett tillstånd---för att spåra informationen över tid och rum, som ett komplement till konventionella mått baserade på sammanflätningsentropi. Informationsgittret ligger till grund för vår algoritm Local Information Time Evolution (LITE), som kontinuerligt separerar och slänger bort storskalig termisk information när den uppstår, och bevarar den lokala information som är relevant för fysiska observabler. Det ger också insikt i Density Matrix Renormalization Group (DMRG)-algoritmen, vilket hjälper oss att förbättra konvergensprocessen vid beräkning av högexciterade tillstånd. Vidare nyttjar vi informationsgittret för en ny universell karakterisering av kvantmateria, vare sig den är termisk eller lokaliserad.

Vi introducerar en slumpkretsmodell av interagerande lokala rörelsekonstanter (l-bitar), för att simulera dynamiken hos motsvarande kvantsystem som är lokaliserade per definition. Vi använder denna modell för att undersöka om långsam partikeltransport kan existera i lokaliserade system. Eftersom den rådande uppfattningen har varit att långsam partikeltransport är omöjlig i lokaliserade system, har ny numerisk evidens för sådan transport väckt en debatt om huruvida lokalisering kan existera som ett makroskopiskt fenomen. Genom att reproducera dessa resultat med vår modell visar vi att observationen av långsam partikeltransport inte är tillräcklig för att utesluta existensen av lokalisering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 155
Series
TRITA-SCI-FOU ; 2024:51
Keywords
Thermalization, Many-body Localization, Local Integrals of motion (l-bits), Quantum Information, Random Unitary Circuits, Excited-state DMRG.
National Category
Condensed Matter Physics
Research subject
Physics, Theoretical Physics
Identifiers
urn:nbn:se:kth:diva-356733 (URN)978-91-8106-090-4 (ISBN)
Public defence
2024-12-12, FB53, Roslagstullsbacken 21, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2024-11-21

Available from: 2024-11-21 Created: 2024-11-21 Last updated: 2024-11-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Artiaco, ClaudiaFleckenstein, ChristophAceituno Chavéz, DavidKlein Kvorning, ThomasBardarson, Jens H.

Search in DiVA

By author/editor
Artiaco, ClaudiaFleckenstein, ChristophAceituno Chavéz, DavidKlein Kvorning, ThomasBardarson, Jens H.
By organisation
Condensed Matter Theory
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 102 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf