kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microwave-assisted fractionation and functionalization of technical lignin toward thermoset resins
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-1184-1310
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-8127-9183
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-6313-8539
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-7790-8987
Show others and affiliations
2023 (English)In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 140, no 45, article id e54645Article in journal (Refereed) Published
Abstract [en]

Lignin is the most abundant aromatic biopolymer, with a potential to serve as a building block of rigid and thermally stable bio-based materials. However, it is still underutilized because of the heterogeneous and not fully understood chemical structure. Here, technical softwood Kraft lignin is refined in to narrow-dispersity and relatively low molar mass fractions by microwave-assisted processing, followed by microwave-assisted allylation and further application in lignin-based thermosets. This microwave processing is carried out under non-catalyzed conditions using a low boiling point solvent and elevated pressure. The properties of the retrieved fractions are investigated by 31P-NMR, heteronuclear single quantum coherence spectroscopy-NMR, SEC, differential scanning calorimetry, and thermogravimetric analysis. The extraction yield of the selected lignin fraction is around 25%, with the number-average molar mass (Mn), weight-average molar mass (Mw), and dispersity (Đ) significantly reduced. The chemically modified lignin is characterized by 31P NMR and FTIR, which provides evidence of the introduction of the allyl moieties. The analyses demonstrate that 90 ± 3% of the hydroxyl groups in fractionated lignin are successfully allylated. Subsequently, the allylated lignin is cross-linked through thermally induced thiol-ene chemistry to produce lignin-based thermosets. The final thermosets exhibit a storage modulus of 4050 ± 60 MPa and a Tg of 105 ± 5°C.

Place, publisher, year, edition, pages
Wiley , 2023. Vol. 140, no 45, article id e54645
Keywords [en]
allylation, microwave-assisted fractionation, microwave-assisted functionalization, softwood lignin, thiol-ene thermosets
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-347512DOI: 10.1002/app.54645ISI: 001060855200001Scopus ID: 2-s2.0-85169677590OAI: oai:DiVA.org:kth-347512DiVA, id: diva2:1871466
Note

QC 20240617

Available from: 2024-06-17 Created: 2024-06-17 Last updated: 2024-09-23Bibliographically approved
In thesis
1. Lignin towards thermoset applications
Open this publication in new window or tab >>Lignin towards thermoset applications
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The global shift towards sustainable development requires the replacement of fossil-based materials with renewable alternatives. Lignin, a complex aromatic biopolymer derived from lignocellulosic biomass, represents one of the most abundant sources of renewable carbon. Retrieved as a byproduct from the pulp and paper industry, lignin has thus far been underutilized despite its potential. Its unique chemical structure, characterized by phenolic units linked through various interunit linkages, makes it a strong candidate for creating durable resistant materials. However, lignin's complex and heterogeneous structure, as well as its limited reactivity, present challenges for its use. In this work, lignin has been investigated for thermosetting applications through different methodologies, including extraction, fractionation, chemical modification, and direct utilization of unmodified lignin. This present research demonstrates different ways to develop materials with enhanced mechanical, thermal, and chemical properties, suitable for industrial applications. To achieve this, various methodologies and lignin sources were employed. Lignin was extracted through a mild extraction from wheat straw in order to valorize agricultural products. Microwave-assisted fractionation was employedin order to isolate lignin fractions with more tunable properties and increased reactivity. Chemical modifications, including epoxidation and allylation, were performed to enhance the reactivity of lignin and improve its compatibility in thermosetting formulations. These modified lignins were incorporated into epoxy-based coatings and thiol-ene systems, demonstrating their potential in producing durable and high-performance materials. In addition to modified lignin, unmodified lignin was directly utilized in coating formulations. This thesis demonstrates that both modified and unmodified lignin can be successfully integrated into thermosetting systems, furnishing materials that meet or exceed the performance of conventional fossil-based counterparts. The work emphasizes the advantages and limitations of each method, highlighting the importance of optimizing processing efficiency, material performance, and environmental sustainability.

Abstract [sv]

Den globala övergången till hållbar utveckling kräver att fossila material ersätts med förnybara alternativ. Lignin, en komplex aromatisk biopolymer som härrör från lignocellulosisk biomassa, representerar en av de mest rikliga källorna till förnybart kol. Lignin utvinns som en biprodukt från massa- och pappersindustrin och har trots sin potential varit underutnyttjad. Dess unika kemiska struktur, som kännetecknas av fenolenheter kopplade genom olika interenhetsbindningar, gör det till en stark kandidat för att skapa hållbara och resistenta material. Dock utgör lignins komplexa och heterogena struktur, samt dess begränsade reaktivitet, utmaningar för dess användning. I detta arbete har lignin undersökts för användning i härdplaster genom olikametoder som inkluderar extraktion, fraktionering, kemisk modifiering och direkt användning av modifierat lignin. Forskningen syftade till att utveckla material med förbättrade mekaniska, termiska och kemiska egenskaper, lämpade för industriella tillämpningar. För att uppnå detta användes olika metoder och ligninkällor. Lignin extraherades genom en mild extraktion från vetestrå för att valorisering jordbruksprodukter. Mikrovågsassisterad fraktionering användes för att isolera ligninfraktioner med mer anpassningsbara egenskaper och ökad reaktivitet. Kemiska modifieringar, inklusive epoxidering och allylering, genomfördes för att förbättra lignins reaktivitet och dess kompatibilitet i härdplastformuleringar. Dessa modifierade lignin integrerades i epoxibaserade beläggningar och thiolen-system, vilket visade deras potential att producera hållbara och högpresterande material. Förutom modifierat lignin användes även modifierat lignin direkt i beläggningsformuleringar. Denna avhandling visar att både modifierat och modifierat lignin framgångsrikt kan integreras i härdplastsystem och skapa material som uppfyller eller överträffar prestandan hos konventionella fossilbaserade motsvarigheter. Arbetet framhäver fördelar och begränsningar med varje metod och understryker vikten av att optimera processeffektivitet, materialprestanda och miljömässig hållbarhet.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 70
Series
TRITA-CBH-FOU ; 2024:43
Keywords
technical lignin, softwood, coatings, thiol-ene thermosets, epoxy-amine, fractionation
National Category
Polymer Technologies Materials Chemistry Organic Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-353722 (URN)978-91-8106-069-0 (ISBN)
Public defence
2024-10-18, F3, https://kth-se.zoom.us/j/65370649186, Lindstedtsvägen 26 & 28, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20240925

Available from: 2024-09-25 Created: 2024-09-23 Last updated: 2024-09-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Truncali, AlessioRibca, IulianaYao, Jenevieve G.Hakkarainen, MinnaJohansson, Mats

Search in DiVA

By author/editor
Truncali, AlessioRibca, IulianaYao, Jenevieve G.Hakkarainen, MinnaJohansson, Mats
By organisation
Coating TechnologyWallenberg Wood Science CenterPolymer Technology
In the same journal
Journal of Applied Polymer Science
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf