Deep Convolutional Denoising for MicroCT: A Self-Supervised Approach
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE credits
Student thesisAlternative title
Brusreducering för mikroCT med djupa faltningsnätverk : En självövervakad metod (Swedish)
Abstract [en]
Microtomography, or microCT, is an x-ray imaging modality that provides volumetric data of an object's internal structure with microscale resolution, making it suitable for scanning small, highly detailed objects. The microCT image quality is limited by quantum noise, which can be reduced by increasing the scan time. This complicates the scanning both of dynamic processes and, due to the increased radiation dose, dose-sensitive samples. A recently proposed method for improved dose- or time-limited scanning is Noise2Inverse, a framework for denoising data in tomography and linear inverse problems by training a self-supervised convolutional neural network. This work implements Noise2Inverse for denoising lab-based cone-beam microCT data and compares it to both supervised neural networks and more traditional filtering methods. While some trade-off in spatial resolution is observed, the method outperforms traditional filtering methods and matches supervised denoising in quantitative and qualitative evaluations of image quality. Additionally, a segmentation task is performed to show that denoising the data can aid in practical tasks.
Abstract [sv]
Mikrotomografi, eller mikroCT, är en röntgenmetod som avbildar små objekt i tre dimensioner med upplösning på mikrometernivå, vilket möjligör avbildning av små och högdetaljerade objekt. Bildkvaliteten vid mikroCT begränsas av kvantbrus, vilket kan minskas genom att öka skanningstiden. Detta försvårar avbildning av dynamiska processer och, på grund av den ökade stråldosen, doskänsliga objekt. En metod som tros kunna förbättra dos- eller tidsbegränsad avbildning är Noise2Inverse, ett ramverk för brusreducering av tomografisk data genom träning av ett självövervakat faltningsnätverk, och jämförs med både övervakade neuronnät och mer traditionella filtermetoder. Noise2Inverse implementaras i detta arbete för brusreducering av data från ett labb-baserat mikroCT-system med cone beam-geometri. En viss reducering i spatiell upplösning observeras, men metoden överträffar traditionella filtermetoder och matchar övervakade neuronnät i kvantitativa och kvalitativa utvärderingar av bildkvalitet. Dessutom visas att metoden går att använda för att förbätta resultat från bildsegmentering.
Place, publisher, year, edition, pages
2024. , p. 61
Series
TRITA-SCI-GRU ; 2024:061
Keywords [en]
X-ray tomography, Deep learning, Image denoising, Self-supervised learning, Linear inverse problems
Keywords [sv]
Röntgentomografi, Djupinlärning, Bildbrusreducering, Självövervakad inlärning, Linjära inversa problem
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-347990OAI: oai:DiVA.org:kth-347990DiVA, id: diva2:1872999
External cooperation
Stockholm University Brain Imaging Centre
Subject / course
Medical Engineering; Applied Physics
Educational program
Master of Science in Engineering - Medical Engineering; Master of Science - Engineering Physics
Presentation
2024-06-12, BioX Library, AlbaNova University Center, Roslagstullsbacken 21, Stockholm, 15:00 (English)
Supervisors
Examiners
2024-06-192024-06-182024-06-24Bibliographically approved