kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of cement grout hydraulic erosion in a homogeneous fracture
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.ORCID iD: 0000-0001-7871-3156
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.ORCID iD: 0000-0002-0958-7181
2024 (English)In: Tunnelling for a Better Life - Proceedings of the ITA-AITES World Tunnel Congress, WTC 2024, CRC Press/Balkema , 2024, p. 2522-2528Conference paper, Published paper (Refereed)
Abstract [en]

Cement grouting has been widely used in rock tunneling to reduce groundwater inflow by sealing rock fractures. However, the injected cement grout often encounters hydraulic erosion that affects the safety and sustainability of rock tunnels in the long term. Analysis of the long-term hydraulic erosion effect on cement grout in rock fractures is therefore important for the safety and sustainability development of rock tunnel engineering. In this work, a hydraulic erosion model for analyzing cement grout erosion in a homogeneous fracture is established and used to theoretically investigate the transmissivity evolution of the grouted fracture under longterm hydraulic erosion. In the present model, the fracture seepage characteristics, solid erosion theory and mass conversation for water-solid two-phase flow are considered, and the mathematical model as a set of partial differential equations is established. Based on laboratory tests, the key parameters (e.g., erosion coefficient) are calibrated and the erosion model is validated. Numerical simulations are conducted by numerically resolving the mathematical model. The results show that the erosion phenomenon first occurs in the edge areas of the grouted area near the fracture boundary; the erosion area gradually expands toward the center of the grouted area. The porosity and flow velocity significantly increase in the area with relatively strong erosion effects. During the erosion process, the concentration of cement grout gradually increases along the seepage path until a more uniform distribution of cement particle concentration is achieved. Due to the erosion process, the spatial distribution of hydraulic pressure along the fracture direction transforms from a linear distribution to a nonlinear distribution. The effective fracture transmissivity increases nonlinearly along the erosion process. The presented erosion model and analysis results are potentially useful for the safety and durability assessment of rock tunnels.

Place, publisher, year, edition, pages
CRC Press/Balkema , 2024. p. 2522-2528
Keywords [en]
Cement grout, Effective transmissivity, Homogeneous fracture, Hydraulic erosion, Long-term effect, Two-phase flow
National Category
Geotechnical Engineering and Engineering Geology
Identifiers
URN: urn:nbn:se:kth:diva-348281DOI: 10.1201/9781003495505-335Scopus ID: 2-s2.0-85195475545OAI: oai:DiVA.org:kth-348281DiVA, id: diva2:1874649
Conference
ITA-AITES World Tunnel Congress, WTC 2024, Shenzhen, China, Apr 19 2024 - Apr 25 2024
Note

QC 20240624

Part of ISBN 978-103280042-4

Available from: 2024-06-20 Created: 2024-06-20 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Duan, HongyuZou, Liangchao

Search in DiVA

By author/editor
Duan, HongyuZou, Liangchao
By organisation
Sustainable development, Environmental science and EngineeringWater and Environmental Engineering
Geotechnical Engineering and Engineering Geology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf