Forecasting air pollution is an important activity for developing sustainable and smart cities. Generated by various sources, air pollutants distribute in the atmospheric environment due to the complex dispersion processes. The emerging sensor and data technologies have promoted the development of data-driven approaches to replace conventional physical models in urban air pollution forecasting. Nevertheless, it is still challenging to capture the intricate spatial and temporal patterns of air pollutant concentrations measured by heterogeneous sensors, especially for long-term prediction of the multi-variate time series data. This paper proposes a deep learning framework for longer-term forecast of air pollutants concentrations using air pollution sensing data, based on a conceptual framework of meta-graph deep learning. The key modules in the framework include meta-graph units and fusion layers, which are designed to learn temporal and spatial correlations respectively. A detailed case was formulated for forecasting air pollutants in Stockholm using air quality sensing data, meteorological data and so on. Experiments were conducted to evaluate the performance of the proposed modelling framework. The computational results show that it outperforms the baseline models and conventional deterministic dispersion models, demonstrating the potential of the framework to be deployed for the real air quality information systems in Stockholm.
QC 20240525
Part of ISBN [9798350311617]