kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhancing carbon fixation in Rubisco through generative modelling
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Mot en förbättring av kolfixering av Rubisco genom generativ AI (Swedish)
Abstract [sv]

Kolavskiljning, avlägsnande av koldioxid (CO2) från atmosfären, har fått uppmärksamhet som en metod för att mildra effekterna av den globala uppvärmningen. Växter och fototrofa mikroorganismer har den inneboende förmåganatt fånga upp kol genom fixering av CO2 för att producera biomassa. Däremot inhemska kolfixeringsvägar begränsas av nyckelenzymer med låg katalytisk aktivitet vilket resulterar i låg energieffektivitet. Rubisco är en sådan nyckelenzym, ökänt för sin dåliga prestanda. Tidigare forskning har misslyckats när det gäller att förbättra kolet fixering i Rubisco med konventionella metoder. Generativ modellering har dykt upp som en innovativ förhållningssätt till enzymteknik, dra fördel av olika arkitekturer för neurala nätverk för att föreslå en ny varianter med önskade egenskaper. Här tränas en variationsautokodare (VAE) på Rubisco-sekvensen utrymme användes för utmaningen med Rubiscos ingenjörskonst. Två modeller utbildades och med hjälp av dimensionsreduktionsegenskapen hos VAE, utforskades fitnesslandskapet i Rubisco. Sekvenser var märkt med katalytiskt relevanta data och en regressionsmodell byggdes med syftet att förutsäga dessa sekvenser med ökad katalytisk aktivitet. Nya Rubisco-sekvenser genererades efter systematiska utfrågning av det lågdimensionella rummet. Användningen av generativ modellering här ger ett nytt perspektiv på Rubisco engineering.

Abstract [en]

Carbon capture, the removal of carbon dioxide (CO2) from the atmosphere, has gained attention as a method to mitigate the effects of global warming. Plants and phototrophic microorganisms have the inherent ability to capture carbon through the fixation of CO2 to produce biomass. However, native carbon fixing pathways are limited by key enzymes with low catalytic activity resulting in low energy efficiency. Rubisco is one such key enzyme, notorious for its poor performance. Past research has been unsuccessful at enhancing carbon fixation in Rubisco through conventional methods. Generative modelling has emerged as an innovative approach to enzyme engineering, taking advantage of different neural network architectures to propose novel variants with desired characteristics. Here, a variational autoencoder (VAE) trained on the Rubisco sequence space was applied to the challenge of Rubisco engineering. Two models were trained and, using the dimensionality reduction property of VAEs, the fitness landscape of Rubisco was explored. Sequences were labelled with catalytically relevant data and a regression model was built with the aim of predicting those sequences with enhanced catalytic activity. Novel Rubisco sequences were generated following systematic interrogation of the low-dimensional space. The use of generative modelling here provides a fresh perspective on Rubisco engineering.

Place, publisher, year, edition, pages
2024.
Series
TRITA-CBH-GRU ; 2024:215
Keywords [en]
Machine learning, generative AI, photosynthesis, carbon fixation, Rubisco
Keywords [sv]
Maskininlärning, generative AI, Rubisco, koldioxidfixering, fotosyntes
National Category
Bioinformatics (Computational Biology)
Identifiers
URN: urn:nbn:se:kth:diva-348361OAI: oai:DiVA.org:kth-348361DiVA, id: diva2:1875744
Subject / course
Biotechnology
Educational program
Degree of Master - Molecular Techniques in Life Science
Supervisors
Examiners
Available from: 2024-06-24 Created: 2024-06-24 Last updated: 2024-06-26

Open Access in DiVA

fulltext(17580 kB)503 downloads
File information
File name FULLTEXT01.pdfFile size 17580 kBChecksum SHA-512
60ae1fe02d17715fe67f60b168c6bb4fdd6ccdf369865a275d7f17e4801961f380a03e1132030d78e52a364ccadafcb5fa63b68aeb3d3ab7f1ce1304b178ce5b
Type fulltextMimetype application/pdf

By organisation
Protein Science
Bioinformatics (Computational Biology)

Search outside of DiVA

GoogleGoogle Scholar
Total: 503 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 614 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf