kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative Denoising Study Deep Learning & Collaborative Filter
KTH, School of Engineering Sciences (SCI), Applied Physics.
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Jämförande Brusreducerande Studie Djup Maskininlärning & Kollaborativa Filter (Swedish)
Abstract [en]

This thesis addresses the challenge of denoising microscopy images captured under low-light conditionswith varying intensity levels. The study compares three deep learning models — N2V, CARE, andRCAN — against the collaborative filter BM4D, which serves as a reference point. The models weretrained on two distinct datasets: Endoplasmic Reticulum and Mitochondria datasets, both acquired witha lattice light-sheet microscope.Results show that BM4D maintains stable performance metrics and delivers superior visual quality,when compared to the noisy input. In contrast, the deep learning models exhibit poor performance onnoisy test images when trained on datasets with non-uniform noise levels. Additionally, a sensitivitycomparison of neural parameter between the same models was made. Revealing that supervised modelsare data-specific to some extent, whereas the self-supervised N2V demonstrates consistent neuralparameters, suggesting lower data specificity.

Abstract [sv]

Denna uppsats tar upp problemet med att reducera brus i mikroskopibilder tagna under svagaljusförhållanden med varierande intensitetsnivåer. Studien jämför tre djupinlärningsmodeller – N2V,CARE och RCAN – mot det kollaborativa filtret BM4D, vilket agerar som en referenspunkt.Modellerna tränades på två olika dataset: Endoplasmic Reticulum och Mitochondria, båda tagna meden selektiv planbelysningsmikroskop (lattice light-sheet microscope).Resultaten visar att BM4D behåller stabila prestationsmått och levererar bättre visuell kvalitet, jämförtmed den brusiga input. Däremot visar djupinlärningsmodellerna bristande prestanda på brusigatestbilder när de tränats på data med icke-enhetliga brusnivåer. Dessutom gjordes enkänslighetsjämförelse av neurala parametrar mellan samma modeller. Detta visade att de övervakademodellerna är specifika för data i viss utsträckning, medan den självövervakade N2V-modellen visarlika neurala parametrar, vilket tyder på lägre dataspecificitet

Place, publisher, year, edition, pages
2024.
Series
TRITA-SCI-GRU ; 2024:115
Keywords [en]
Block Matching 3D (BM3D), Block Matching 4D (BM4D), Content Aware Image Restoration (CARE), Deep Learning (DL), Image Denoising, Image Quality, Machine Learning (ML), Neural Network, Noise, Noise2Void (N2V), Residual Channel Attenuation Network (RCAN), Signal-to-Noise Ratio (SNR)
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-348386OAI: oai:DiVA.org:kth-348386DiVA, id: diva2:1875954
Subject / course
Physics
Educational program
Master of Science - Engineering Physics
Supervisors
Examiners
Available from: 2024-06-24 Created: 2024-06-24 Last updated: 2024-06-24Bibliographically approved

Open Access in DiVA

fulltext(2812 kB)161 downloads
File information
File name FULLTEXT01.pdfFile size 2812 kBChecksum SHA-512
42837115de805280b1871652737b8b5bc5650dde49315b78b6a4f0fefd7a9b7fdef52d010cc98b54c6cd0ee01cc8b9565469bc32de32e385e833ee6f24ab4854
Type fulltextMimetype application/pdf

By organisation
Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 161 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 382 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf