Influence of particle diameter on aerosolization performance and release of budesonide loaded mesoporous silica particlesShow others and affiliations
2024 (English)In: European Journal of Pharmaceutical Sciences, ISSN 0928-0987, E-ISSN 1879-0720, Vol. 200, article id 106828Article in journal (Refereed) Published
Abstract [en]
The potential of micron-sized amorphous mesoporous silica particles as a novel controlled release drug delivery system for pulmonary administration has been investigated. Mesoporous silica formulations were demonstrated to provide a narrower particle size distribution and (spherical) shape uniformity compared to commercial micronized formulations, which is critical for repeatable and targeted aerosol delivery to the lungs. The release profiles of a well-known pulmonary drug loaded into mesoporous particles of different mean particle diameters (2.4, 3.9 and 6.3 µm) were analysed after aerosolization in a modified Andersen Cascade Impactor. Systematic control of the release rate of drug loaded into the particles was demonstrated in simulated lung fluid by variation of the mean particle diameter, as well as an enhanced release compared to a commercial micronized formulation. The mesoporous silica formulations all demonstrated an increased release rate of the loaded drug and moreover, under aerosolization from a commercial, low-cost dry powder inhaler (DPI) device, the formulations showed excellent performance, with low retainment and commercially viable fine particle fractions (FPFs). In addition, the measured median mass aerodynamic diameter (MMAD) of the different formulations (2.8, 4.1 and 6.2 µm) was shown to be tuneable with particle size, which can be helpful for targeting different regions in the lung. Together these results demonstrate that mesoporous silica formulations offer a promising novel alternative to current dry powder formulations for pulmonary drug delivery.
Place, publisher, year, edition, pages
Elsevier BV , 2024. Vol. 200, article id 106828
Keywords [en]
Controlled release, Fine particle fraction, Mesoporous silica, Particle diameter, Pulmonary drug delivery
National Category
Pharmaceutical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-348760DOI: 10.1016/j.ejps.2024.106828ISI: 001258625600001PubMedID: 38862047Scopus ID: 2-s2.0-85196016444OAI: oai:DiVA.org:kth-348760DiVA, id: diva2:1878670
Note
QC 20240701
2024-06-272024-06-272024-07-15Bibliographically approved