kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Defibrillated Lignocellulose Recovery Guided by Plant Chemistry and Anatomy – A Pioneering Study with Lupinus angustifolius
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, Centres, Center for the Advancement of Integrated Medical and Engineering Sciences, AIMES. Karolinska Institutet.ORCID iD: 0000-0002-0492-0395
AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences Karolinska Institutet and KTH Royal Institute of Technology Stockholm SE‐171 77 Sweden; Department of Neuroscience Karolinska Institute Stockholm SE‐171 77 Sweden.ORCID iD: 0000-0002-5765-553X
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, Centres, Center for the Advancement of Integrated Medical and Engineering Sciences, AIMES. Karolinska Institutet Department of Neuroscience Karolinska Institute.ORCID iD: 0000-0002-5479-7591
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology. KTH, Centres, Center for the Advancement of Integrated Medical and Engineering Sciences, AIMES. Karolinska Institutet Department of Neuroscience Karolinska Institute Stockholm SE‐171 77 Sweden.ORCID iD: 0000-0002-1631-1781
2024 (English)In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 8, no 7Article in journal (Refereed) Published
Abstract [en]

The strive toward sustainability increases the demand for bio-based material production, forcing expansion of the biorefinery feedstock supply from forest wood to non-woody materials such as agricultural residues. As a model organism for legume crops, the aptness of agricultural lupins as a lignocellulose feedstock is investigated. Principle chemical analysis combined with optotracing, in which the fluorescent tracer molecule Carbotrace 680 generates a visual map of the native tissues’ lignocellulose anatomy at sub-cellular resolution, enables informed design of a mild recovery process. A streamlined conversion approach is then designed, yielding lignin-containing microfibrillated cellulose. By monitoring defibrillation and delignification throughout the extraction process, the use of optotracing for non-destructive fiber analytics at unprecedented details across all hierarchical structures of lignocellulosic materials is demonstrated. This crop valorization is a prime illustration of a holistic use of lupin biomass, with seeds serving as plant-based food sources, and other parts as sources for lignocellulose-based materials, thereby expanding both the biorefinery concept and feedstock supply.

Place, publisher, year, edition, pages
Wiley , 2024. Vol. 8, no 7
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-349013DOI: 10.1002/adsu.202300632ISI: 001175903400001Scopus ID: 2-s2.0-85187276262OAI: oai:DiVA.org:kth-349013DiVA, id: diva2:1879391
Funder
Swedish Research Council, 2019‐01460KTH Royal Institute of Technology, VF‐2019‐0110Karolinska Institute, 1‐249/2019
Note

QC 20240628

Available from: 2024-06-28 Created: 2024-06-28 Last updated: 2025-04-30Bibliographically approved
In thesis
1. Biopolymer Networks from Terrestrial and Aquatic Biomasses
Open this publication in new window or tab >>Biopolymer Networks from Terrestrial and Aquatic Biomasses
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Today’s sustainability challenges demand more than new materials - they require new ways of thinking about the resources we already have to support zero waste strategies. This thesis explores the valorization of underutilized biomasses - specifically the terrestrial crop Lupinus angustifolius (Lupin) and the marine macroalga Ulva fenestrata (Ulva) - as alternative feedstocks for bio-based materials. These two biomasses were selected for their dual functionality: both are already cultivated for food applications, yet their residual non-edible fractions remain largely unexplored. By combining structural biology, bioprocess engineering, materials science, and bioimaging, the thesis establishes a comprehensive, interdisciplinary framework for biomass characterization and conversion. Biopolymer mapping using multimodal fluorescence imaging and optotracing revealed the tissue architecture and native biopolymer distribution in Lupin residues and Ulva thalli. From Lupin, lignocellulose was extracted through mild alkaline pretreatment and defibrillated into lignin-containing microfibrillated cellulose (L-MFC). In Ulva, complex structural features, including oligo-/polyaromatic-rich layers and rhizoidal fibrillar structures, were discovered, prompting a redefinition of its tissue terminology. A decellularization-inspired approach was then developed to recover tissue scaffolds from Ulva, leveraging its naturally thin, two-cell-layered structure to remove cellular content while preserving scaffold integrity. Finally, two material design strategies were employed: a bottom-up approach for Lupin-derived L-MFC films, exploiting their nanoscale fibrillar network for structural organization, and a top-down approach for Ulva-based films, preserving the intrinsic tissue scaffold architecture. The resulting materials demonstrated structural integrity while preserving key biopolymer networks. Across the entire biomass-to-material workflow, multimodal fluorescence imaging combined with optotracing was integrated and adapted as a novel analytical tool, providing non-destructive, real-time and high-resolution information.

Abstract [sv]

Dagens hållbarhetsutmaningar kräver mer än bara nya material – de kräver ett nytt sätt att tänka kring resurser vi redan har. Denna avhandling utforskar möjligheten att använda underutnyttjade biomassor – specifikt jordbruksgrödan Lupinus angustifolius (lupin) och den marina makroalgen Ulva fenestrata (Ulva) – som alternativa råvaror för biobaserade material. Dessa två biomassor valdes utifrån sin dubbla funktionalitet: båda odlas redan idag för livsmedelsändamål, medan resterande oätliga delar förblir till stor del outforskade.Genom att kombinera strukturbiologi, bioprocessteknik, materialvetenskap och avbildningsteknik etableras ett interdisciplinärt ramverk för karakterisering och omvandling av biomassa. Kartläggning och avbildning av biopolymerer med multimodal fluorescensmikroskopi och optotracing avslöjade vävnadsarkitekturen och den naturliga fördelningen av biopolymerer i olika växtdelar hos lupin och Ulva. Från lupin extraherades lignocellulosa via mild alkalisk förbehandling som sedan defibrillerades till lignininnehållande mikrofibrillerad cellulosa (L-MFC). I Ulva upptäcktes komplexa strukturer, inklusive oligo-/polyaromatiska lager och fibrillära strukturer i rhizoidzonen, vilket föranledde en omdefinition av dess vävnadsterminologi. En metod inspirerad av vävnadsdecellularisering utvecklades därefter för att isolera en cellväggsstruktur från Ulva. Cellinnehållet avlägsnades under milda betingelser för att bevara dess naturligt endast två cellager tunna struktur och integritet. Slutligen applicerades två olika strategier för materialdesign: en bottom-up-metod för att skapa filmer av lupin-baserad L-MFC, där dess fibrillära nätverk nyttjades för strukturell organisering, och en top-down-metod för Ulva-baserade filmer där den ursprungliga vävnadsarkitekturen bevarades. De resulterande materialen uppvisade god strukturell integritet samtidigt som viktiga biopolymernätverk bevarades. Multimodal fluorescensavbildning och optotracing integrerades och anpassades som ett nytt analytiskt verktyg, vilket möjliggjorde icke-förstörande, realtids- och högupplöst analys genom hela processen från biomassa till material.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. p. 76
Series
TRITA-CBH-FOU ; 2025:12
Keywords
Biomass valorization, crops, macroalgae, Lupin, Ulva, lignocellulose, biopolymer, L-MFC, decellularization, bottom-up, top-down, optotracing, fluorescence, Carbotrace 680, Carbotrace 630, Biomassa, jordbruksgrödor, makroalger, Lupin, Ulva, lignocellulosa, biopolymer, L-MFC, decellularisering, bottom-up, top-down, optotracing, fluorescens, Carbotrace 680, Carbotrace 630
National Category
Materials Engineering
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-362908 (URN)978-91-8106-280-9 (ISBN)
Public defence
2025-06-02, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20250506

Available from: 2025-05-06 Created: 2025-04-30 Last updated: 2025-05-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Schmidt, Alina E. M.Richter-Dahlfors, AgnetaEdlund, Ulrica

Search in DiVA

By author/editor
Schmidt, Alina E. M.Choong, Ferdinand X.Richter-Dahlfors, AgnetaEdlund, Ulrica
By organisation
Fibre- and Polymer TechnologyCenter for the Advancement of Integrated Medical and Engineering Sciences, AIMESPolymer Technology
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 240 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf