kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling the combined effect of initial density and temperature on the soil–water characteristic curve of unsaturated soils
School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.ORCID iD: 0000-0002-9937-3442
2023 (English)In: Acta Geotechnica, ISSN 1861-1125, E-ISSN 1861-1133, Vol. 18, no 12, p. 6427-6455Article in journal (Refereed) Published
Abstract [en]

The soil–water characteristic curve (SWCC) plays an important role in solving the stability and deformation problems of unsaturated soils. In many practical situations, soils are usually experienced by both deformations and thermal conditions. In this interest, the paper proposes a simple and effective model to predict the combined effect of initial density and temperature on the SWCC and to be able to quantify the changes in thermal-hydro-mechanical behavior of unsaturated soils. In the first step, an initial density-dependent SWCC model is presented using the translation principle between particle-size distribution curve and soil–water characteristic curve. In the second part, a non-isothermal model is proposed to predict the effect of temperature on the SWCC. The key to the non-isothermal model is considering five different temperature-dependent functions, which are surface tension, contact angle, particle-size expansion, void ratio, and water density. On the basis of 22 data sets of thermal volume change, this study also developed further a theoretical correlation between void ratio and temperature that is directly related to soil plasticity. It was observed that the value of the thermal void ratio increases as soil plasticity increases, and there is a nonlinear relationship between the plasticity index and the void ratio. Because of this, soils with high plasticity are more susceptible to volume changes caused by temperature fluctuations than soils with low plasticity. A coupled mechanical–thermal model is then produced which is capable to predict separately or simultaneously the effect of temperature and initial density on SWCC. The proposed model is validated against several test data sets available in the literature. The results show that the proposed model has a good performance in predicting the variation in SWCC with arbitrary temperature and initial density.

Place, publisher, year, edition, pages
Springer Nature , 2023. Vol. 18, no 12, p. 6427-6455
National Category
Geotechnical Engineering and Engineering Geology
Research subject
Civil and Architectural Engineering, Soil and Rock Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-349217DOI: 10.1007/s11440-023-01920-6ISI: 001011725200001Scopus ID: 2-s2.0-85150869383OAI: oai:DiVA.org:kth-349217DiVA, id: diva2:1880110
Note

QC 20240701

Available from: 2024-06-30 Created: 2024-06-30 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Pham, Tuan A.

Search in DiVA

By author/editor
Pham, Tuan A.
In the same journal
Acta Geotechnica
Geotechnical Engineering and Engineering Geology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf