kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Prediction of skull fractures in blunt force head traumas using finite element head models
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Neuronic Engineering.ORCID iD: 0000-0003-2357-3795
Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark.
Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark.
Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark.
Show others and affiliations
2023 (English)In: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 23, no 1, p. 207-225Article in journal (Refereed) Published
Abstract [en]

Traumatic head injuries remain a leading cause of death and disability worldwide. Although skull fractures are one of the most common head injuries, the fundamental mechanics of cranial bone and its impact tolerance are still uncertain. In the present study, a strain-rate-dependent material model for cranial bone has been proposed and implemented in subject-specific Finite Element (FE) head models in order to predict skull fractures in five real-world fall accidents. The subject-specific head models were developed following an established image-registration-based personalization pipeline. Head impact boundary conditions were derived from accident reconstructions using personalized human body models. The simulated fracture lines were compared to those visible in post-mortem CT scans of each subject. In result, the FE models did predict the actual occurrence and extent of skull fractures in all cases. In at least four out of five cases, predicted fracture patterns were comparable to ones from CT scans and autopsy reports. The tensile material model, which was tuned to represent rate-dependent tensile data of cortical skull bone from literature, was able to capture observed linear fractures in blunt indentation loading of a skullcap specimen. The FE model showed to be sensitive to modeling parameters, in particular to the constitutive parameters of the cortical tables. Nevertheless, this study provides a currently lacking strain-rate dependent material model of cranial bone that has the capacity to accurately predict linear fracture patterns. For the first time, a procedure to reconstruct occurrences of skull fractures using computational engineering techniques, capturing the all-in-all fracture initiation, propagation and final pattern, is presented.

Place, publisher, year, edition, pages
Springer Nature , 2023. Vol. 23, no 1, p. 207-225
National Category
Forensic Science Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-349371DOI: 10.1007/s10237-023-01768-5ISI: 001056287200001PubMedID: 37656360Scopus ID: 2-s2.0-85169305371OAI: oai:DiVA.org:kth-349371DiVA, id: diva2:1880385
Funder
Vinnova, 2019-03386KTH Royal Institute of Technology
Note

QC 20240701

Available from: 2024-07-01 Created: 2024-07-01 Last updated: 2025-04-25Bibliographically approved
In thesis
1. From Impact to Insight: Finite Element Modeling of Real-World Head Trauma
Open this publication in new window or tab >>From Impact to Insight: Finite Element Modeling of Real-World Head Trauma
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Traumatic head injuries represent a major global health burden, affecting up to 70 million people annually world-wide. To study head injury mechanisms and evaluate preventive measures, virtual, anatomically-detailed human surrogates, referred to as Human Body Models (HBMs), can be created using Finite Element (FE) modeling techniques. Such FE models can be used to computationally recreate real-world head traumas to study human response to impact and reveal injury mechanisms. However, since FE is an inherently heavy computational task, there are numerous modeling challenges associated with using FE analysis for this purpose: constitutive models need to be appointed to complex biological tissues, models need to be properly validated, the chosen approach should be feasible in terms of time, and so forth. This doctoral thesis aims to address a few of these difficulties.

This thesis is composed of four comprehensive studies, each related to the overall objective of developing new methodologies and models, and further developing existing ones, for in-depth FE reconstructions of real-world head trauma. To emphasize their applicability in head injury research, the four studies also feature in-depth reconstructions of real-world injurious events. In the first study, a male and female pedestrian HBM was developed based on an existing occupant HBM, along with an efficient framework for anthropometric personalization. In the second study, a framework for reconstructing head traumas of pedestrians and cyclists in real-world road traffic accidents was developed, validated and exemplified by reconstructing 20 real-world cases. In the third study, a material model for cranial bone was developed and validated, and used for predicting skull fractures in five fall accidents. Lastly, in the fourth study, the material model was applied to a subject-specific head model, used to conduct an in-depth reconstruction of a workplace fatality to assess the protective effect of construction helmets.

Together, these four studies highlight how in-depth FE reconstructions, involving geometrically personalized models of the human body, can provide head injury predictions with striking resemblance to real-world data. When conducted with care, such reconstructions can offer valuable insights into the complex dynamics of head trauma. They can be indispensable tools for evaluating injury prevention strategies, and can potentially be useful within the field of forensic medicine, as they may help open up for objectification of forensic evaluations.

Abstract [sv]

Traumatiska huvudskador utgör en stor folkhälsoutmaning, med en årlig förekomst som uppskattas till uppemot 70 miljoner fall världen över. För att studera mekanismerna bakom huvudskador kan virtuella, anatomiskt detaljerade mänskliga surrogatmodeller, eller humanmodeller (eng: Human Body Model, HBM), skapas med hjälp av Finita Element (FE) metoden. Sådana FE-modeller kan användas för att rekonstruera huvudtrauman från verkliga olycksfall numeriskt, för att i sin tur synliggöra skademekanismer bakom skall- och hjärnskador. Det finns dessvärre många utmaningar med att använda FE-analys för detta ändamål: materialmodeller måste formuleras för komplexa biologiska vävnader, FE modeller bör valideras, tillvägagångssättet bör vara tidseffektivt och så vidare. Denna doktorsavhandling ämnar ta itu med några av dessa svårigheter.

Avhandlingen består av fyra delstudier, som alla förhåller sig till det övergripande målet att utveckla nya metoder och modeller, samt vidareutveckla  befintliga, för FE-rekonstruktioner av verkliga huvudtrauman. För att belysa deras tillämpning i huvudskadeforskning, behandlar de fyra studierna även rekonstruktioner av verkliga olycksfall. I den första studien utvecklades en manlig och kvinnlig fotgängar-HBM baserat på en befintlig passagerar-HBM, tillsammans med ett effektivt verktyg för att rätta till en HBMs antropometri. I den andra studien utvecklades en metodologi för att rekonstruera huvudtrauman i trafikolyckor (gångtrafikanter eller cyklister). Metodologin validerades genom att rekonstruera 20 verkliga olyckor. I den tredje studien utvecklades och validerades en materialmodell för mänskligt skallben, som senare användes för att prediktera skallfrakturer i fem verkliga fallolyckor. Materialmodellen applicerades på en individanpassad huvudmodell, som också användes i den fjärde studien, där en rekonstruktion av en arbetsplatsolycka genomfördes för att utvärdera skyddshjälmars effektivitet.

Tillsammans belyser dessa fyra studier hur FE-rekonstruktioner, som involverar individanpassade biomekaniska FE-modeller, kan förutsäga huvudskador med slående likhet med verkliga data. När rekonstruktioner genomförs noggrant kan de hjälpa till att åskådliggöra den komplexa dynamiken bakom skall- och hjärnskador. De kan vara oumbärliga verktyg för att utvärdera skadeförebyggande åtgärder och undersöka orsakssamband inom rättsmedicinska sammanhang.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 103
Series
TRITA-CBH-FOU ; 2025:8
Keywords
Finite element human body model, Skull fracture prediction, Accident reconstruction, Head injury prevention, Real-world traffic data, Forensic head trauma analysis, Vulnerable road users, Humanmodell, Prediktering av skallfraktur, Olycksfallsrekonstruktion, Prevention av huvudskador, Rättsmedicinsk bedömning av huvudskada, Oskyddade trafikanter
National Category
Forensic Science Applied Mechanics Solid and Structural Mechanics Medical Modelling and Simulation
Research subject
Technology and Health
Identifiers
urn:nbn:se:kth:diva-362814 (URN)978-91-8106-238-0 (ISBN)
Public defence
2025-05-26, T2 (Jacobssonsalen), Hälsovägen 11C, via Zoom: https://kth-se.zoom.us/j/67595775577, Huddinge, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2025-04-25

Available from: 2025-04-25 Created: 2025-04-25 Last updated: 2025-04-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Lindgren, NataliaKleiven, SveinLi, Xiaogai

Search in DiVA

By author/editor
Lindgren, NataliaKleiven, SveinLi, Xiaogai
By organisation
Neuronic Engineering
In the same journal
Biomechanics and Modeling in Mechanobiology
Forensic ScienceMechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 92 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf