kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Classifying Struggling Students Through Error-Message Analysis in Programming Education: A Swedish Case Study
KTH, School of Electrical Engineering and Computer Science (EECS).
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Classifying Struggling Students through Error-Messages Analysis in Programming Education : A Swedish Case Study (English)
Abstract [sv]

Eftergymnasiala programmeringskurser med stora klasser skapar utmaningar med att identifiera lågpresterande elever. Utbildningsdatautvinning är en möjlighet att åtgärda detta genom att objektivt bedöma elevers akademiska prestation. Vi genomförde en fallstudie på en 264 elever stor eftergymnasial programmeringskurs. Syftet var att skapa en klassificeringsmodell som kunde klassificera elever ifall de förväntades att inte vara färdiga med sin labbuppgift innan eller efter deadline. Datamängden innehöll hur många fel varje elev hade gjort på varje uppgift och om eleven var godkänd på laborationerna innan eller efter deadline. Genom att använda kronologiskt ordnade delmängder av labuppgifter framkom det att man kan klassificera elever tidigt i en labbkurs även genom att endast använda en fjärdedel av mängden deluppgifter med en uppnådd 80% precision och pricksäkerhet.

Abstract [en]

Large classrooms in the setting of programming higher education present issues in effectively identifying and supporting struggling students in time. The use of Educational Data Mining (EDM) methods presents an opportunity to alleviate these issues by objectively examining students’ learning activities. We carried out a case-study in the setting of a selected programming course featuring 264 students. The aim was to develop a classification model which could classify students into finishing their lab assignment before or after the set deadline. The dataset used contained a number of errors each student had made on each task, and whether the student passed their labs in time. Using chronologically ordered subsets of the lab tasks, it was found that the model could classify students already one fourth of the way into a lab course to around 80% precision and accuracy.

Place, publisher, year, edition, pages
2024. , p. 7
Series
TRITA-EECS-EX ; 2024:235
Keywords [en]
Educational data mining, Programming education, Error-message analysis, Classification modelling
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-349955OAI: oai:DiVA.org:kth-349955DiVA, id: diva2:1881811
Supervisors
Examiners
Available from: 2024-08-08 Created: 2024-07-03 Last updated: 2024-08-08Bibliographically approved

Open Access in DiVA

fulltext(594 kB)72 downloads
File information
File name FULLTEXT01.pdfFile size 594 kBChecksum SHA-512
b68150a988330ac1db44c61f737e1f35d54a6e001643df4f2615037c1538f1a6a60ccf79b7bdd12c6b5dd9fd2ca89dff6fd684ac776b5d02d34f680d0a681d5d
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 72 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 165 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf