kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
D3QN-Based Trajectory and Handover Management for UAVs Co-existing with Terrestrial Users
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS.ORCID iD: 0000-0002-3968-1179
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS.ORCID iD: 0000-0001-5298-7490
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS.
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS.ORCID iD: 0000-0001-8517-7996
Show others and affiliations
2023 (English)In: 2023 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2023, Institute of Electrical and Electronics Engineers (IEEE) , 2023, p. 103-110Conference paper, Published paper (Refereed)
Abstract [en]

The ubiquitous cellular network is a strong candidate for providing UAVs’ wireless connectivity. Due to the maneuverability advantage and higher altitude, UAVs could have line-of-sight (LoS) connectivity with more base station (BS) candidates than terrestrial users. However, the LoS connectivity could also enhance the propagation of up-link interference caused by UAVs over co-existing terrestrial users. In addition, UAVs would perform more handovers than terrestrial users when moving due to the extensive overlap in the coverage areas of many BS candidates. The solution is to bypass the overlapping coverage areas by designing the UAVs’ trajectory and to reduce interference by optimizing radio resource allocation through handover management. This paper studies the joint optimization of a UAV’s trajectory design and handover management to minimize the weighted sum of three key performance indicators (KPIs): delay, up-link interference, and handover numbers. A dueling double deep Q-network (D3QN) based reinforcement learning algorithm is proposed to solve the optimization problem. Results show that the proposed approach can reduce the handover numbers by 90% and the interference by 18% at the cost of a small increment in transmission delay when compared with the benchmark scheme, which controls the UAV to move along the shortest path and perform handover based on received signal strength. Finally, we verify the advantage of introducing trajectory design, which can reduce the interference by 29% and eliminate the handover numbers by 33% when compared to the D3QN-based policy without trajectory design.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2023. p. 103-110
Keywords [en]
cellular-connected UAVs, handover management, machine learning, radio resource allocation, reinforcement learning, trajectory design
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:kth:diva-349994DOI: 10.23919/WiOpt58741.2023.10349832Scopus ID: 2-s2.0-85180568021OAI: oai:DiVA.org:kth-349994DiVA, id: diva2:1882443
Conference
21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2023, Singapore, Singapore, Aug 24 2023 - Aug 27 2023
Note

Part of ISBN 9783903176553

QC 20240705

Available from: 2024-07-05 Created: 2024-07-05 Last updated: 2025-01-02Bibliographically approved
In thesis
1. AI Assisted Mobility Management for Cellular Connected UAVs
Open this publication in new window or tab >>AI Assisted Mobility Management for Cellular Connected UAVs
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Unmanned Aerial Vehicles (UAVs) connected to cellular networks, i.e., cellular-connected UAVs, introduce unique challenges and opportunities in mobility management that distinguish them from terrestrial users. This thesis presents a comprehensive approach for optimizing UAV integration into cellular networks.

We first investigate the distinct mobility management needs for cellular-connected UAVs. Unlike terrestrial mobility management, which primarily focuses on preventing radio link failures at cell edges, UAVs experience fragmented and overlapping coverage, often with line-of-sight visibility to multiple ground base stations (BSs). Consequently, UAV mobility management must address not only link stability but also the minimization of unnecessary handovers with sustained service availability, particularly in uplink scenarios.To tackle these challenges, we propose two solutions, a model-based handover parameter optimization algorithm and a model-free deep reinforcement learning (DRL) based handover algorithm, both designed specifically for UAV mobility management.We extend the problem by integrating UAV path planning with wireless objectives, including interference management, delay reduction, and minimized handovers. This results in a joint optimization framework for UAV trajectory planning, handover management, and radio resource allocation. To solve this multi-objective problem, we develop a multi-agent DRL algorithm that combines mission-specific trajectory planning with network-driven adjustments, optimizing resource allocation and handover transitions.

Furthermore, we address mobility management in multi-connectivity scenarios where UAVs are served by clusters of distributed BSs. As UAVs move, the serving BS clusters must be dynamically reconfigured, necessitating coordinated resource allocation under stringent and time-sensitive reliability constraints. We propose a centralized, fully distributed, and hierarchical DRL-based approaches to achieve reliable connectivity, reduce power consumption, and minimize cluster reconfiguration frequency.

Lastly, to evaluate a network’s capability to support range-based localization for cellular-connected UAVs, we introduce an analytical framework. This framework defines B-localizability as the probability of a UAV receiving sufficient localization signals from at least B ground BSs, meeting a specific Signal-to-Interference-plus-Noise Ratio (SINR) threshold. By incorporating UAV parameters within a three-dimensional environment, we provide insights into localizability factors such as distance distributions, path loss, interference, and SINR. 

Abstract [sv]

Obemannade luftfarkoster (UAV:er) som är anslutna till mobilnätverk medför unika utmaningar och möjligheter inom mobilitetshantering som skiljer sig från dem för markbundna användare. Denna avhandling presenterar ett omfattande tillvägagångssätt för att optimera UAV-integration med mobilnätverk.

Vi undersöker först de särskilda behoven av mobilitetshantering för cellulärt anslutna UAV:er. Till skillnad från mobilitetshantering för markanvändare, som främst fokuserar på att förhindra radiolänkfel vid cellkanter, upplever UAV:er fragmenterad och överlappande täckning med siktlinje till flera markbasstationer (BS:er). Därför måste mobilitetshanteringen för UAV:er inte bara hantera länkstabilitet utan även minimera onödiga överlämningar och säkerställa bibehållen tjänstetillgänglighet, särskilt i uppströmskommunikation.

För att hantera dessa utmaningar föreslår vi både modellbaserade och modellfria algoritmer specifikt utformade för UAV-mobilitetshantering. Vi utökar problemet genom att integrera UAV-ruttplanering med trådlösa mål, inklusive störningshantering, minskad fördröjning och minimerade överlämningar. Detta resulterar i en gemensam optimeringsram för UAV-ruttplanering, överlämningshantering och radioresurstilldelning. För att lösa detta multiobjektivproblem utvecklar vi en algoritm baserad på djup förstärkningsinlärning (DRL) som kombinerar uppdragsbaserad ruttplanering med nätverksdrivna justeringar, vilket optimerar resursallokering och överlämningshantering.

Vidare behandlar vi mobilitetshantering i multikonnektivitetsscenarier där UAV:er betjänas av kluster av distribuerade basstationer. När UAV:er rör sig måste de servande BS-klustren dynamiskt omkonfigureras, vilket kräver samordnad resursallokering under strikta och tidskänsliga tillförlitlighetskrav. Vi föreslår ett centraliserat, fullt distribuerat och hierarkiskt DRL-baserat tillvägagångssätt för att uppnå tillförlitlig anslutning, minska strömförbrukningen och minimera frekvensen av klusteromkonfigureringar.

Slutligen, för att utvärdera nätverkets förmåga att stödja positionsbaserad lokalisering för cellulärt anslutna UAV:er, introducerar vi en analytisk ram. Denna ram definierar B-lokaliserbarhet som sannolikheten för att en UAV tar emot tillräckliga lokaliseringssignaler från minst B markbasstationer, som uppfyller en specifik signal-till-interferens-plus-brusförhållande (SINR) tröskel. Genom att inkludera UAV-parametrar i en tredimensionell miljö tillhandahåller vi insikter om lokaliserbarhetsfaktorer som distansfördelningar, dämpning, interferens och SINR. 

Place, publisher, year, edition, pages
Sweden: KTH Royal Institute of Technology, 2025. p. 224
Series
TRITA-EECS-AVL ; 2025:10
Keywords
Unmanned aerial vehicles, Reinforcement Learning, Wireless networks, Reliability, Air-to-ground channel, Mobility management, Han dover, Unmanned aerial vehicles, Reinforcement Learning, Wireless networks, Reliability, Air-to-ground channel, Mobility management, Handover
National Category
Communication Systems Engineering and Technology
Research subject
Telecommunication
Identifiers
urn:nbn:se:kth:diva-358036 (URN)978-91-8106-164-2 (ISBN)
Public defence
2025-01-31, https://kth-se.zoom.us/j/61632995144, Ka-Sal C, Kistangangen 16, Kista, 10:00 (English)
Opponent
Supervisors
Funder
Vinnova
Note

QC 20250102

Available from: 2025-01-02 Created: 2025-01-02 Last updated: 2025-01-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Deng, YuhangMeer, Irshad AhmadZhang, ShuaiÖzger, MustafaCavdar, Cicek

Search in DiVA

By author/editor
Deng, YuhangMeer, Irshad AhmadZhang, ShuaiÖzger, MustafaCavdar, Cicek
By organisation
Communication Systems, CoS
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf