kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring invisible neutrino decay at ESSnuSB
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. The Oskar Klein Centre, AlbaNova University Center, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden.ORCID iD: 0000-0002-6071-8546
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. The Oskar Klein Centre, AlbaNova University Center, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden; Center of Excellence for Advanced Materials and Sensing Devices, Ruder Bošković Institute, 10000, Zagreb, Croatia.ORCID iD: 0000-0003-3540-6548
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. The Oskar Klein Centre, AlbaNova University Center, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden.
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. The Oskar Klein Centre, AlbaNova University Center, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden; University of Iceland, Science Institute, Dunhaga 3, IS-107, Reykjavik, Iceland.ORCID iD: 0000-0002-3525-8349
2021 (English)In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2021, no 5, article id 133Article in journal (Refereed) Published
Abstract [en]

We explore invisible neutrino decay in which a heavy active neutrino state decays into a light sterile neutrino state and present a comparative analysis of two baseline options, 540 km and 360 km, for the ESSnuSB experimental setup. Our analysis shows that ESSnuSB can put a bound on the decay parameter τ3/m3 = 2.64 (1.68) × 10−11 s/eV for the baseline option of 360 (540) km at 3σ. The expected bound obtained for 360 km is slightly better than the corresponding one of DUNE for a charged current (CC) analysis. Furthermore, we show that the capability of ESSnuSB to discover decay, and to measure the decay parameter precisely, is better for the baseline option of 540 km than that of 360 km. Regarding effects of decay in δCP measurements, we find that in general the CP violation discovery potential is better in the presence of decay. The change in CP precision is significant if one assumes decay in data but no decay in theory.

Place, publisher, year, edition, pages
Springer Nature , 2021. Vol. 2021, no 5, article id 133
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-350207DOI: 10.1007/jhep05(2021)133ISI: 000656977200003Scopus ID: 2-s2.0-85106336528OAI: oai:DiVA.org:kth-350207DiVA, id: diva2:1882983
Note

QC 20240708

Available from: 2024-07-08 Created: 2024-07-08 Last updated: 2024-07-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Choubey, SandhyaGhosh, ManojitKempe, DanielOhlsson, Tommy

Search in DiVA

By author/editor
Choubey, SandhyaGhosh, ManojitKempe, DanielOhlsson, Tommy
By organisation
Particle and Astroparticle Physics
In the same journal
Journal of High Energy Physics (JHEP)
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf