kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Symmetrized and non-symmetrizedasymptotic mean value Laplacian in metric measure spaces
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0002-9608-3984
Laboratoire de Mathématiques Jean Leray Nantes Université, UMR CNRS 6629 2 rue de la Houssiniére BP 92208 F-44322 Nantes Cedex 3 France, 2 rue de la Houssiniére BP 92208.
2023 (English)In: Proceedings of the Royal Society of Edinburgh. Section A Mathematics, ISSN 0308-2105, E-ISSN 1473-7124, p. 1-38Article in journal (Refereed) Epub ahead of print
Abstract [en]

The asymptotic mean value Laplacian - AMV Laplacian - extends the Laplace operator from to metric measure spaces through limits of averaging integrals. The AMV Laplacian is however not a symmetric operator in general. Therefore, we consider a symmetric version of the AMV Laplacian, and focus lies on when the symmetric and non-symmetric AMV Laplacians coincide. Besides Riemannian and 3D contact sub-Riemannian manifolds, we show that they are identical on a large class of metric measure spaces, including locally Ahlfors regular spaces with suitably vanishing distortion. In addition, we study the context of weighted domains of - where the two operators typically differ - and provide explicit formulae for these operators, including points where the weight vanishes.

Place, publisher, year, edition, pages
Cambridge University Press (CUP) , 2023. p. 1-38
Keywords [en]
average integral, Laplace operator, mean value property, metric measure space
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-350293DOI: 10.1017/prm.2023.118ISI: 001112769700001Scopus ID: 2-s2.0-85179462908OAI: oai:DiVA.org:kth-350293DiVA, id: diva2:1883682
Note

QC 20240711

Available from: 2024-07-11 Created: 2024-07-11 Last updated: 2024-07-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Minne, Andreas

Search in DiVA

By author/editor
Minne, Andreas
By organisation
Mathematics (Div.)
In the same journal
Proceedings of the Royal Society of Edinburgh. Section A Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf