kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Shielding for socially appropriate robot listening behaviors
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-7130-0826
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-3510-5481
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-2212-4325
2024 (English)In: 2024 33rd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 2024Conference paper, Published paper (Refereed)
Abstract [en]

A crucial part of traditional reinforcement learning (RL) is the initial exploration phase, in which trying available actions randomly is a critical element. As random behavior might be detrimental to a social interaction, this work proposes a novel paradigm for learning social robot behavior--the use of shielding to ensure socially appropriate behavior during exploration and learning. We explore how a data-driven approach for shielding could be used to generate listening behavior. In a video-based user study (N=110), we compare shielded exploration to two other exploration methods. We show that the shielded exploration is perceived as more comforting and appropriate than a straightforward random approach. Based on our findings, we discuss the potential for future work using shielded and socially guided approaches for learning idiosyncratic social robot behaviors through RL.   

Place, publisher, year, edition, pages
2024.
National Category
Computer graphics and computer vision
Identifiers
URN: urn:nbn:se:kth:diva-350432OAI: oai:DiVA.org:kth-350432DiVA, id: diva2:1883846
Conference
2024 33rd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Pasadena, California, USA August 26th-30th, 2024
Note

Paper will be published later this year (accepted camera-ready version available).

QC 20240717

Available from: 2024-07-11 Created: 2024-07-11 Last updated: 2025-02-07Bibliographically approved
In thesis
1. Computational Approaches to Interaction-Shaping Robotics
Open this publication in new window or tab >>Computational Approaches to Interaction-Shaping Robotics
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The goal of this thesis is to develop computational approaches generating autonomous social robot behaviors that can interact with multiple people and dynamically adapt to shape their interactions. Positive interactions between people impact their well-being and are essential to a fulfilled and healthy life. In this thesis, we coin the term Interaction-Shaping Robotics (ISR) as the study of robots that shape interactions between other agents, e.g., people, and capture previous efforts from the Human-Robot Interaction (HRI) community and emphasize the potential positive or negative, intended or unintended effects of these robots. Previous efforts have explored phenomena that indicate interaction-shaping capabilities of social robots, however, how to de-velop autonomous social robots that can adapt to positively shape interactions between people based on perceived human-human dynamics remains largely unexplored. In this thesis, we contribute to the technical advancement of social interaction-shaping robots by developing heuristics and machine learning methods and demonstrating their effectiveness in studies with real users. We focus on shaping behaviors, i.e., balancing people’s participation in interactions to foster inclusion among newly-arrived and already present children in a music game and support adult second language learners and native speakers in a language game. Especially when leveraging learning techniques, an effective interaction-shaping robot needs to act socially appropriately. We design heuristics that are appropriate by design and establish the feasibility of autonomy for interaction-shaping robots through minimal perception of group dynamics and simple behavior rules. Allowing for learning behaviors for more complex interactions, we provide a formal definition of the problem of interaction-shaping and show that using imitation learning (IL) or offline reinforcement learning (RL) based on previously collected HRI data is feasible without compromising the interaction. To meet the challenge of acting appropriately, we explore techniques applied prior to deployment when learning offline from data and shielding - a technique from the safe RL community - to eventually allow for learning during deployment in interaction. Overall, this thesis demonstrates the feasibility and promise of computational methods for autonomous interaction-shaping robots and demonstrates that these methods generate effective and appropriate robot behavior when balancing participation to ensure the inclusion of all human group members.

Abstract [sv]

Målet med denna avhandling är att utveckla beräkningsbaserade meto-der för att generera autonoma sociala robotbeteenden som kan interagera med flera människor och dynamiskt anpassa sig för att forma deras interak-tioner. Positiva interaktioner mellan människor påverkar deras välbefinnande och är avgörande för ett meningsfullt och hälsosamt liv. I denna avhandling myntar vi termen "Interaction-Shaping Robotics"(ISR) som studerandet av robotar som formar interaktioner mellan andra aktörer, t.ex. människor, och sammanställer tidigare studier inom människ-robot-interaktion (eng. Human-Robot Interaction, HRI) samt betonar den potentiella positiva eller negativa, avsiktliga eller oavsiktliga, inverkan av dessa robotar. Tidigare studier har utforskat fenomen som indikerar på interaktionsformande förmågor hos sociala robotar, men utvecklandet av autonoma sociala robotar som kan anpassa sig för att positivt forma interaktioner mellan människor baserat på observerad människa-till-människa dynamik är fortfarande till stor del outforskat. I denna avhandling bidrar vi till den tekniska utvecklingen av sociala interaktionsformande robotar genom att utveckla heuristiker och maskininlärningsmetoder och demonstrera deras effektivitet i studier med användare. Vi fokuserar på att forma beteenden, d.v.s. balansera människors deltagande i interaktioner för att främja inkludering bland nyanlända och redan närvarande barn i ett musikspel och stödja vuxna andraspråksinlärare och modersmålstalare i ett språkspel. Särskilt när man utnyttjar maskininlärningsmetoder, behöver en effektiv interaktionsformande robot agera socialt korrekt. Vi designar heuristiker som är lämpliga by design” och fastställer genomförbarheten av autonomi för interaktionsformande robotar genom minimal perception av gruppdynamik och enkla beteenderegler. Genom att tillåta inlärning av beteenden för mer komplexa interaktioner, tillhandahåller vi en formell definition av problemet av interaktionsformande och visar att användning av imitationsinlärning (eng. imitation learning, IL) off-line förstärkningsinlärning (eng. reinforcement learning, RL), baserat på tidigare insamlad HRI-data är genomförbart utan att kompromissa med interaktionen. För att möta utmaningen att agera korrekt, utforskar vi tekniker som tillämpas innan implementering när man lär sig off-line från data och ”shielding” - en teknik inom säker RL - för att så småningom möjliggöra inlärning under implementering vid interaktion. Sammanfattningsvis visar denna avhandling genomförbarheten och utsikten av beräkningsbaserade metoder för autonoma interaktionsformande robotar och demonstrerar att dessa metoder genererar effektiva och lämpliga robotbeteenden när de balanserar deltagande för att säkerställa inkludering av alla mänskliga gruppmedlemmar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 63
Series
TRITA-EECS-AVL ; 2024:60
Keywords
Human-robot interaction, social robotics, behavior generation, multiparty interaction, human-human dynamics, machine learning
National Category
Computer graphics and computer vision
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-350809 (URN)978-91-8106-006-5 (ISBN)
Public defence
2024-09-05, https://kth-se.zoom.us/j/69226775403, F3 Flodis, Lindstedtsvägen 26 & 28, KTH Campus, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20240722

Available from: 2024-07-22 Created: 2024-07-19 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

gillet_shielding_cameraready(665 kB)250 downloads
File information
File name FULLTEXT01.pdfFile size 665 kBChecksum SHA-512
c7b02072cb87cb08f339d60f5fc804916d95d92612599669f2c4732b2202b63b2302003ccd17d61ba11d1a86c229d50ed4f70c4046577f26d6506a9bdefcc79e
Type fulltextMimetype application/pdf

Authority records

Gillet, SarahMarta, DanielAkif, MohammedLeite, Iolanda

Search in DiVA

By author/editor
Gillet, SarahMarta, DanielAkif, MohammedLeite, Iolanda
By organisation
Robotics, Perception and Learning, RPL
Computer graphics and computer vision

Search outside of DiVA

GoogleGoogle Scholar
Total: 250 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 300 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf