kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Online Edge Coloring Is (Nearly) as Easy as Offline
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Theoretical Computer Science, TCS. Max Planck Institute for Informatics, Saarbrücken, Germany.ORCID iD: 0009-0004-0874-2356
EPFL, Lausanne, Switzerland.
EPFL, Lausanne, Switzerland.
Technion - Israel Institute of Technology, Haifa, Israel.
2024 (English)In: STOC 2024 - Proceedings of the 56th Annual ACM Symposium on Theory of Computing, Association for Computing Machinery (ACM) , 2024, p. 36-46Conference paper, Published paper (Refereed)
Abstract [en]

The classic theorem of Vizing (Diskret. Analiz.'64) asserts that any graph of maximum degree Δcan be edge colored (offline) using no more than Γ+1 colors (with Δbeing a trivial lower bound). In the online setting, Bar-Noy, Motwani and Naor (IPL'92) conjectured that a (1+o(1))Γ-edge-coloring can be computed online in n-vertex graphs of maximum degree Γ=ω(logn). Numerous algorithms made progress on this question, using a higher number of colors or assuming restricted arrival models, such as random-order edge arrivals or vertex arrivals (e.g., AGKM FOCS'03, BMM SODA'10, CPW FOCS'19, BGW SODA'21, KLSST STOC'22). In this work, we resolve this longstanding conjecture in the affirmative in the most general setting of adversarial edge arrivals. We further generalize this result to obtain online counterparts of the list edge coloring result of Kahn (J. Comb. Theory. A'96) and of the recent "local"edge coloring result of Christiansen (STOC'23).

Place, publisher, year, edition, pages
Association for Computing Machinery (ACM) , 2024. p. 36-46
Keywords [en]
Edge Coloring, Matching, Online Algorithms
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-350539DOI: 10.1145/3618260.3649741ISI: 001254099900006Scopus ID: 2-s2.0-85196129327OAI: oai:DiVA.org:kth-350539DiVA, id: diva2:1884453
Conference
56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, Canada, Jun 24 2024 - Jun 28 2024
Note

Part of ISBN 9798400703836

QC 20240716

Available from: 2024-07-16 Created: 2024-07-16 Last updated: 2024-11-03Bibliographically approved
In thesis
1. Matchings, Maxflows, Matroids: The Power of Augmenting Paths and Computational Models
Open this publication in new window or tab >>Matchings, Maxflows, Matroids: The Power of Augmenting Paths and Computational Models
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Matchings, Maximum Flow, and Matroid Intersections are fundamental combinatorial optimization problems that have been studied extensively since the inception of computer science. A series of breakthroughs in graph algorithms and continuous optimization in the past decade has led to exciting almost-optimal algorithms for maximum flow and bipartite matching. However, we are still far from fully understanding these problems. First, it remains open how to solve these problems in modern models of computation, such as parallel, dynamic, online, and communication models. Second, as algorithms become more sophisticated in pursuit of efficiency, they often sacrifice simplicity, potentially obscuring valuable combinatorial insights. This raises a fundamental question: can we develop efficient algorithms that maintain the combinatorial nature of these problems, rather than relying on linear algebra and continuous methods?

This thesis returns to the classic augmenting paths framework---the original approach to matchings, maximum flow, and matroid intersection---with the goal of developing new efficient combinatorial algorithms. Our key contributions include the first combinatorial algorithm achieving almost-linear time for maximum flow on dense graphs, and the first subquadratic independence-query algorithm for matroid intersection. For modern computational models, our contributions include an improved online rounding scheme for fractional matching (leading to an optimal online edge coloring algorithm), a resolution of the query and communication complexity for bipartite matching, and the first sublinear-round parallel algorithms for matroid intersection.

Abstract [sv]

Matchningar, Maximala Flöden och Matroidsnitt är grundläggande kombinatoriska optimeringsproblem som har studerats ingående sedan datorvetenskapens början.  En serie genombrott inom grafalgoritmik och kontinuerlig optimering under det senaste årentiondet har lett till imponerande nästan optimala algoritmer för maximalt flöde och bipartit matchning. Vi är dock fortfarande långt ifrån att fullt förstå dessa problem. För det första återstår frågan om hur man kan lösa dessa problem i andra beräkningsmodeller, såsom parallell-, dynamisk-, online- och kommunikationsmodeller. För det andra, när algoritmer blir allt mer sofistikerade i deras effektivitetsträvan, offrar de ofta enkelhet, vilket potentiellt kan dölja värdefulla kombinatoriska insikter. Detta motiverar en grundläggande fråga: kan vi utveckla effektiva algoritmer som bevarar den kombinatoriska karaktären hos dessa problem, istället för att förlita sig på linjär algebra och kontinuerliga metoder?

Denna avhandling återgår till de klassiska augmenting-pathsalgoritmerna---det ursprungliga angreppssättet för matchningar, maximalt flöde och matroid-snitt---med målet att utveckla nya effektiva kombinatoriska algoritmer. Våra viktigaste bidrag inkluderar den första kombinatoriska algoritmen som uppnår nästan linjär tid för maximalt flöde på täta grafer, och den första subkvadratiska independence-query-algoritmen för matroidsnitt. För moderna beräkningsmodeller inkluderar våra bidrag förbättrade  onlineavrundningsalgorithmer för fraktionell matchning (vilket leder till en optimal onlinealgoritm för kantfärgning), en lösning av query- och kommunikationskomplexiteten för bipartit matchning, och de första sublinjära parallella algoritmerna för matroidsnitt.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. x, 67
Series
TRITA-EECS-AVL ; 2024:84
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-355377 (URN)978-91-8106-091-1 (ISBN)
Public defence
2024-11-27, F3, Lindstedtsvägen 26 & 28, KTH, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20241105

Available from: 2024-11-05 Created: 2024-11-03 Last updated: 2024-11-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Blikstad, Joakim

Search in DiVA

By author/editor
Blikstad, Joakim
By organisation
Theoretical Computer Science, TCS
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf