kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A structural battery with carbon fibre electrodes balancing multifunctional performance
KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0002-4085-6060
KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0001-7681-7912
KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0002-9744-4550
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
2024 (English)In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 256, p. 110728-, article id 110728Article in journal (Refereed) Published
Abstract [en]

Structural multifunctional materials have the potential to transform current technologies by implementing several functions to one material. In a multifunctional structural battery, mass saving and energy efficiency are created by the synergy between the mechanical and electrochemical properties of the material's constituents. Consequently, structural batteries could e.g. mitigate electric vehicle overweight or enable thinner portable electronics. This requires combining the best composite and battery manufacturing practices. In the present work this is achieved through the infusion of a stack of carbon fibre-based electrodes with a hybrid polymer-liquid electrolyte. The realised full cell structural battery is based on carbon fibre electrodes with a lithium iron phosphate (LiFePO4) coating on the positive side. This battery laminate shows a very good balance between energy density, stiffness and strength of 33.4 Wh/kg, 38 GPa and 234 MPa, respectively. To push these performances further, different improvement strategies are discussed, and the results are compared with previously published target performances. Ultimately, we demonstrate the feasibility of designing and manufacturing all-fibre solid-state structural batteries as a material solution for future lightweight electric commodities.

Place, publisher, year, edition, pages
Elsevier BV , 2024. Vol. 256, p. 110728-, article id 110728
Keywords [en]
A. Carbon fibres, A. Multifunctional composites, B. electro-chemical behaviour, B. Synergism, Biphasic electrolyte
National Category
Materials Chemistry Vehicle and Aerospace Engineering
Identifiers
URN: urn:nbn:se:kth:diva-350678DOI: 10.1016/j.compscitech.2024.110728ISI: 001267241400001Scopus ID: 2-s2.0-85198007620OAI: oai:DiVA.org:kth-350678DiVA, id: diva2:1884644
Note

QC 20241113

Available from: 2024-07-17 Created: 2024-07-17 Last updated: 2025-03-13Bibliographically approved
In thesis
1. Bicontinuous Polymer-Liquid Electrolytes: Advancing Laminated Structural Batteries for Balanced Performance
Open this publication in new window or tab >>Bicontinuous Polymer-Liquid Electrolytes: Advancing Laminated Structural Batteries for Balanced Performance
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The transport sector significantly contributes to greenhouse gas emissions, driving the shift toward electric vehicles. However, the range of electric vehicles is limited due to the need for heavy battery packs. One approach to reduce this mass is through multifunctional materials, such as laminated structural batteries (SBs), which combine structural integrity with energy storage. Laminated SBs consist of carbon fibers embedded in a multifunctional polymer matrix, known as a structural electrolyte. Here, carbon fibers provide structural support, act as electrodes, and serve as current collectors, while the structural electrolyte enables ion conduction and mechanical load transfer. This thesis explores how varying structural electrolyte compositions and processing conditions influence the multifunctional properties, with a focus on their integration into laminated SBs. The research demonstrates the effectiveness of thermally-initiated polymerization-induced phase separation, producing full-cell laminated SBs with bicontinuous polymer-liquid electrolytes (i.e. structural electrolytes). These electrolytes feature diverse morphologies that impact ionic conductivity and storage modulus, presenting safer and more environmentally compatible formulations with adequate structural electrode performance. Long-term studies reveal an effect of structural electrolyte formulation on the structural electrode performance and how fiber-matrix adhesion is affected under repeated charging/discharging. Finally, a state-of-the-art, SB is presented with fibers in both electrodes, achieving an excellent balance of energy density and mechanical performance. This work lays a foundation for future advancements in SB technology, identifying challenges and opportunities to enhance multifunctional properties. 

Abstract [sv]

Transportsektorn bidrar i hög grad till utsläppen av växthusgaser, vilket driver på övergången till elfordon. Räckvidden för elfordon är dock begränsad på grund av behovet av tunga batteripaket. Ett sätt att minska denna massa är att använda multifunktionella material, t.ex. laminerade strukturella batterier (SB), som kombinerar strukturell integritet med energilagring. Laminerade SB består av kolfibrer som är inbäddade i en multifunktionell polymermatris, en så kallad strukturell elektrolyt. Här ger kolfibrerna strukturellt stöd, fungerar som elektroder och strömavtagare, medan den strukturella elektrolyten möjliggör jonledning och mekanisk lastöverföring. Denna avhandling undersöker hur varierande strukturella elektrolytsammansättningar och bearbetningsförhållanden påverkar de multifunktionella egenskaperna, med fokus på deras integration i laminerade SB. Forskningen visar effektiviteten hos termiskt initierad polymerisationsinducerad fasseparation, vilket producerar fullcellslaminerade SB med bikontinuerliga polymer-vätskeelektrolyter (strukturella elektrolyter). Dessa elektrolyter har olika morfologier som påverkar jonledningsförmågan och styvheten, vilket ger säkrare och mer miljöanpassade formuleringar med adekvat strukturell elektrodprestanda. Långtidsstudier visar att formuleringen av den strukturella elektrolyten påverkar den strukturella elektrodens prestanda och hur vidhäftningen mellan fiber och matris påverkas vid upprepad laddning/urladdning. Slutligen presenteras ett strukturellt batteri baserat på kolfiber i båda elektorderna som uppvisar en utmärktbalans mellan energitäthet och mekanisk prestanda. Detta arbete lägger grunden för framtida framsteg inom SB-tekniken och identifierar utmaningar ochmöjligheter för att förbättra multifunktionella egenskaper. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 88
Series
TRITA-CBH-FOU ; 2024:57
Keywords
Lithium-ion, structural batteries, bicontinuous electrolytes, structural electrodes, highly concentrated electrolytes, carbon fibers, polymerization-induced phase separation, Litiumjonbatteri, strukturella batterier, bikontinuerlig elektrolyter, högkoncentrerade elektrolyter, struktureller elektroder, kolfibrer, polymerisationsinducerad fasseparation
National Category
Composite Science and Engineering Materials Engineering Polymer Chemistry Energy Engineering Materials Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-356240 (URN)978-91-8106-132-1 (ISBN)
Public defence
2024-12-10, F3, Lindstedtsvägen 28, https://kth-se.zoom.us/j/61737431674, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20241113

Available from: 2024-11-13 Created: 2024-11-12 Last updated: 2024-11-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bouton, KarlSchneider, Lynn MariaZenkert, DanLindbergh, Göran

Search in DiVA

By author/editor
Bouton, KarlSchneider, Lynn MariaZenkert, DanLindbergh, Göran
By organisation
Engineering MechanicsApplied Electrochemistry
In the same journal
Composites Science And Technology
Materials ChemistryVehicle and Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 353 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf