Concentrated vortex flows contribute to the aerodynamic performance of aircraft at elevated load conditions. For military interests, the vortex flows are exploited at maneuver conditions of combat aircraft and missiles. For transport interests, the vortex flows are exploited at takeoff and landing conditions as well as at select transonic conditions. Aircraft applications of these vortex flows are reviewed with a historical perspective followed by a discussion of the underlying physics of a concentrated vortex flow. A hierarchy of computational fluid dynamics simulation technology is then presented followed by findings from a capability survey for predicting concentrated vortex flows with computational fluid dynamics. Results are focused on military and civil fixed-wing aircraft; only limited results are included for missiles, and rotary-wing applications are not assessed. Opportunities for predictive capability advancement are then reported with comments related to digital transformation interests. A hierarchical approach that merges a physics-based perspective of the concentrated vortex flows with a systems engineering viewpoint of the air vehicle is also used to frame much of the discussion.
QC 20240719