kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
P-partitions and p-positivity
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0003-2176-0554
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2019 (English)In: Seminaire Lotharingien de Combinatoire, E-ISSN 1286-4889, no 82B, article id #61Article in journal (Refereed) Published
Abstract [en]

Using the combinatorics of a-unimodal sets, we establish two new results in the theory of quasisymmetric functions. First, we obtain the expansion of the fundamental basis into quasisymmetric power sums. Secondly, we prove that generating functions of reverse P-partitions expand positively into quasisymmetric power sums. Consequently any nonnegative linear combination of such functions is p-positive whenever it is symmetric. We apply this method to derive positivity results for chromatic quasisymmetric functions and unicellular LLT polynomials.

Place, publisher, year, edition, pages
Universitat Wien, Fakultat für Mathematik , 2019. no 82B, article id #61
Keywords [en]
posets, symmetric functions, unimodality
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-350743Scopus ID: 2-s2.0-85108547372OAI: oai:DiVA.org:kth-350743DiVA, id: diva2:1884835
Note

QC 20240718

Available from: 2024-07-18 Created: 2024-07-18 Last updated: 2024-07-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

ScopusFulltext

Authority records

Alexandersson, PerSulzgruber, Robin

Search in DiVA

By author/editor
Alexandersson, PerSulzgruber, Robin
By organisation
Mathematics (Div.)
In the same journal
Seminaire Lotharingien de Combinatoire
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf