kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Svensk inflation: Undersökning av bidragande faktorer och prediktion med LSTM-baserad maskininlärningsmodell
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2024 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
The Swedish Inflation : Investigation of Contributing Factors and Prediction using a LSTM-based Machine Learning Model (English)
Abstract [en]

This study investigates the key factors influencing Swedish inflation and employs a Long Short-Term Memory (LSTM) based machine learning model to identify the most contributing factors through prediction. Using data from Swedish National Bureau of Statistics, the research focuses on aspects such as state finances, demand, supply and expectations. The LSTM based model was chosen for its ability to handle sequence data and long-term dependencies, making it suitable for economic forecasting. Monthly data from 2000 to 2023 were collected and normalized to ensure consistency. The LSTM based model was trained and validated using different configurations. The most accurate predictions were achieved using seven factors: previous inflation, money supply, GDP, national debt, exchange rates (Euro and Dollar), and capacity utilization, yielding a Mean Absolute Error (MAE) of 0.0491. Remarkably, even with just three factors (previous inflation, money supply, and GDP), the model maintained a high predictive accuracy with an MAE of 0.0515. The findings provide valuable insights for policymakers, particularly the Riksbank and the Swedish Government. Identifying the primary drivers of inflation supports more informed decision-making and proactive measures to stabilize the economy. Furthermore, this research aligns with global development goals by promoting sustainable economic growth and innovation through better financial planning and resource allocation.

Abstract [sv]

Denna studie undersöker bidragande faktorer som påverkar svensk inflation och använder en Long Short-Term Memory (LSTM)-baserad maskininlärningsmodell för att identifiera dessa faktorer genom prediktion. Data från Statistiska centralbyrån används, med fokus på aspekter som statsfinanser, utbud, efterfrågan förväntningar. Den LSTM-baserade modellen valdes för dess förmåga att hantera sekvensdata och långsiktiga beroenden, vilket gör den lämplig för ekonomiska prognoser. Månadsdata från 2000 till 2023 samlades in och normaliserades. Den LSTM-baserade modellen tränades och validerades med olika konfigurationer. De mest exakta prediktionerna uppnåddes med sju faktorer: tidigare inflation, penningmängd, BNP, statsskuld, valutakurser (Euro och Dollar) och kapacitetsutnyttjande, vilket gav ett medelabsolutfel (MAE) på 0,0594. Även med bara tre faktorer (tidigare inflation, penningmängd och BNP) upprätthöll modellen hög prediktiv noggrannhet med ett MAE på 0,0491. Resultaten ger värdefulla insikter för beslutsfattare, särskilt Sveriges Riksbank och Sveriges regering. Att identifiera de primära drivkrafterna bakom inflationen stödjer mer informerade beslut och proaktiva åtgärder för att stabilisera ekonomin. Vidare främjar denna forskning hållbar ekonomisk tillväxt och innovation genom bättre finansiell planering och resursallokering, i linje med globala utvecklingsmål.

Place, publisher, year, edition, pages
2024. , p. 11
Series
TRITA-EECS-EX ; 2024:258
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-350754OAI: oai:DiVA.org:kth-350754DiVA, id: diva2:1884863
Supervisors
Examiners
Available from: 2024-08-09 Created: 2024-07-18 Last updated: 2024-08-09Bibliographically approved

Open Access in DiVA

fulltext(498 kB)138 downloads
File information
File name FULLTEXT01.pdfFile size 498 kBChecksum SHA-512
3ce446333c3da4a78fd2319f30a49f51716faafd340509825242687305f7f8a8e1f8e84184a61507177c606548fc4562ab7287f384b3ffedb4ef0778e782d91d
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 138 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 245 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf