kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of surface characteristics of polypropylene on E. coli and S. aureus biofilms: From conventional to additive manufacturing of bioprocess equipment
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0003-1129-908X
Uppsala Univ, Dept Med Biochem & Microbiol, Uppsala, Sweden..
RISE Res Inst Sweden, Dept Mfg Proc, Argongatan 30, S-E43153 Mölndal, Sweden..
Uppsala Univ, Dept Med Biochem & Microbiol, Uppsala, Sweden..
Show others and affiliations
2024 (English)In: Applied Materials Today, ISSN 2352-9407, Vol. 39, article id 102312Article in journal (Refereed) Published
Abstract [en]

The fast-progressing landscape of the bioprocessing industry emphasizes innovation and efficiency enhancement, propelled by the integration of advanced solutions. Additive manufacturing technologies, particularly laserbased powder bed fusion with polypropylene, are pivotal in this industrial metamorphosis. However, despite the substantial scientific effort in the field, a significant gap exists in comprehending the surface characteristics of new surfaces and their implications for bacterial attachment and biofilm formation. This arises, in part, due to the absence of comprehensive and universally applicable topographical characterization analysis specifically designed for additively manufactured-fabricated surfaces. Typically, researchers tend to rely on the commonly used roughness parameter, Sa, that primarily quantifies the average height variation across a surface. Addressing this limitation is crucial for understanding the connection between surface characteristics and bacterial attachment dynamics. Here, we propose an innovative approach using surface analysis including confocal microscopy, advanced roughness measurements, and multivariate statistical analysis to uncover the connections between bacterial attachment for Gram negative Escherichia coli and Gram positive Staphylococcus aureus in early biofilm formation with surfaces produced by standardized and additively manufactured techniques. Finally, we advocate for the adoption of a set of roughness parameters that specifically describe the dale region of the surfaces. By doing so, we intend to establish direct links between surface texture and bacterial adhesion, thus contributing significantly to the advancement of both bioprocessing and additive manufacturing research domains.

Place, publisher, year, edition, pages
Elsevier BV , 2024. Vol. 39, article id 102312
Keywords [en]
Biofilm, 3D-printing, Polypropylene, Surface roughness, Wettability
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-350854DOI: 10.1016/j.apmt.2024.102312ISI: 001265212300001Scopus ID: 2-s2.0-85197427802OAI: oai:DiVA.org:kth-350854DiVA, id: diva2:1885230
Note

QC 20240722

Available from: 2024-07-22 Created: 2024-07-22 Last updated: 2024-09-06Bibliographically approved
In thesis
1. Polymer Surface Topography in Life Science Applications: Impact of Manufacturing and Environmental Factors
Open this publication in new window or tab >>Polymer Surface Topography in Life Science Applications: Impact of Manufacturing and Environmental Factors
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The Life Sciences industry is leading the fifth industrial revolution, driving manufacturing towards precision, personalization and circularity through the implementation of additive manufacturing (AM). Since its origin in 1983, AM has enabled the fabrication of complex components previously inconceivable through conventional manufacturing techniques. In particular, powder bed fusion and material extrusion techniques have been adopted for their versatility with polymeric materials and ability to produce components meeting bioprocessing, biopharmaceutical and tissue engineering requirements.

Despite its potential, integrating AM in the Life Sciences presents crucial challenges, particularly due to the complex surfaces produced through the layer by-layer fabrication process, which result in rough surfaces and affect the functionality of the printed components. Traditionally, surface texture is characterized by contact stylus measurements employing profile roughness parameters such as the average roughness (Ra). However, the use of the Ra parameter is insufficient, as it fails to capture essential 3D topographical features and spatial variations.

This thesis addresses these challenges through two main research phases. First, it develops a comprehensive characterization workflow for polypropylene surfaces fabricated by conventional manufacturing, powder bed fusion and post-processing techniques. By implementing advanced roughness analysis, this research presents a deeper understanding of surface properties, such as texture and wettability, and their impact on essential bioprocessing applications, including cleanliness, bacterial adhesion, and biofilm formation.

The second phase extends this methodology to analyze environmental and sterilization effects on the surface properties of three dimensional-printed scaffolds. These platforms, made from degradable polymers, are intended for soft tissue engineering and regenerative medicine applications. The research examines how different thermal conditions and sterilization processes affect the surface texture and, consequently, the thermal and physical properties of the scaffolds.

The findings contribute to optimizing AM technologies for clinical and bioprocessing applications, providing a roadmap for future innovation. By emphasizing interdisciplinary collaboration, this thesis emphasizes the necessity of bridging materials science, engineering, and biology to create effective solutions for societal challenges.

Abstract [sv]

Life Sciences-industrin leder den femte industriella revolutionen och drivertillverkningen mot precision, personalisering och cirkularitet genomimplementering av additiv tillverkning (AM). Sedan dess ursprung 1983 har AMmöjliggjort tillverkningen av komplexa komponenter som tidigare varotänkbara med konventionella tillverkningstekniker. Särskiltpulverbäddsammansmältning och materialextrusionstekniker har antagits förderas mångsidighet med polymermaterial och förmåga att producerakomponenter som uppfyller krav inom bioprocesser, biopharmaceutik ochvävnadsteknik.

Trots dess potential står integrationen av AM inom Life Sciences inför viktigautmaningar, särskilt på grund av de komplexa ytor som produceras genomlager-på-lager-tillverkningsprocessen, vilket resulterar i grova ytor och påverkarfunktionen hos de utskrivna komponenterna. Traditionellt karakteriserasytstrukturen genom kontaktmätningar som använder profilensgrovhetsparametrar såsom genomsnittlig grovhet (Ra). Användningen av Raparameternär dock otillräcklig eftersom den misslyckas med att fånga viktiga3D-topografiska egenskaper och rumsliga variationer.

Denna avhandling tar itu med dessa utmaningar genom två huvudsakligaforskningsfaser. Först utvecklas ett omfattande karaktäriseringsflöde förpolypropenytor tillverkade med konventionell tillverkning,pulverbäddsammansmältning och efterbehandlingstekniker. Genom attanvända avancerad analys av ytans råhet erbjuder detta tillvägagångssätt endjupare förståelse av ytegenskaper, såsom textur och vätbarhet, och deraspåverkan på viktiga bioprocessapplikationer, inklusive renlighet, bakteriellvidhäftning och biofilmsbildning.

Den andra fasen utvidgar denna metodik för att analysera miljö- ochsterilisationseffekter på ytans egenskaper hos tredimensionellt utskrivnaställningar. Dessa plattformar, tillverkade av nedbrytbara polymerer, är avseddaför att regenerera mjukvävnad och regenerativ medicin. Forskningenundersöker hur olika termiska förhållanden och steriliseringsprocesserpåverkar ytstruktur och därmed de termiska och fysiska egenskaperna hosställningarna.

Resultaten bidrar till att optimera AM-teknologier för kliniska ochbioprocessapplikationer och erbjuder en vägkarta för framtida innovation.Genom att betona tvärvetenskapligt samarbete lyfter denna avhandling framnödvändigheten av att bygga broar mellan materialvetenskap, ingenjörskonstoch biologi för att skapa effektiva lösningar på samhällsutmaningar.

 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 85
Series
TRITA-CBH-FOU ; 2024:31
Keywords
Polymeric surfaces, additive manufacturing, bioprocessing, surface characterization, tissue engineering, sterilization, thermal conditions, degradable polymers, 3D-printed scaffolds.
National Category
Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-352784 (URN)978-91-8106-020-1 (ISBN)
Public defence
2024-10-04, Kollegiesalen, Brinellvägen 6, https://kth-se.zoom.us/j/64926682181, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20240906

Available from: 2024-09-06 Created: 2024-09-05 Last updated: 2024-09-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Morales-Lopez, AlvaroFinne Wistrand, Anna

Search in DiVA

By author/editor
Morales-Lopez, AlvaroFinne Wistrand, Anna
By organisation
Polymer Technology
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 201 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf