kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-bandwidth low-current measurement system for automated and scalable probing of tunnel junctions in liquids
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0002-2278-1368
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.ORCID iD: 0000-0002-2810-2151
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0002-6753-8548
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0001-6630-243X
Show others and affiliations
2024 (English)In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 95, no 7, article id 074710Article in journal (Refereed) Published
Abstract [en]

Tunnel junctions have long been used to immobilize and study the electronic transport properties of single molecules. The sensitivity of tunneling currents to entities in the tunneling gap has generated interest in developing electronic biosensors with single molecule resolution. Tunnel junctions can, for example, be used for sensing bound or unbound DNA, RNA, amino acids, and proteins in liquids. However, manufacturing technologies for on-chip integrated arrays of tunnel junction sensors are still in their infancy, and scalable measurement strategies that allow the measurement of large numbers of tunneling junctions are required to facilitate progress. Here, we describe an experimental setup to perform scalable, high-bandwidth (>10 kHz) measurements of low currents (pA–nA) in arrays of on-chip integrated tunnel junctions immersed in various liquid media. Leveraging a commercially available compact 100 kHz bandwidth low-current measurement instrument, we developed a custom two-terminal probe on which the amplifier is directly mounted to decrease parasitic probe capacitances to sub-pF levels. We also integrated a motorized three-axis stage, which could be powered down using software control, inside the Faraday cage of the setup. This enabled automated data acquisition on arrays of tunnel junctions without worsening the noise floor despite being inside the Faraday cage. A deliberately positioned air gap in the fluidic path ensured liquid perfusion to the chip from outside the Faraday cage without coupling in additional noise. We demonstrate the performance of our setup using rapid current switching observed in electromigrated gold tunnel junctions immersed in deionized water.

Place, publisher, year, edition, pages
AIP Publishing , 2024. Vol. 95, no 7, article id 074710
National Category
Nano Technology Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering; Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-350909DOI: 10.1063/5.0204188ISI: 001282712200002PubMedID: 39037302Scopus ID: 2-s2.0-85199320773OAI: oai:DiVA.org:kth-350909DiVA, id: diva2:1885491
Funder
Swedish Research Council, 2018-06169Swedish Foundation for Strategic Research, ITM17-0049Swedish Foundation for Strategic Research, STP19-0065
Note

QC 20240724

Available from: 2024-07-23 Created: 2024-07-23 Last updated: 2025-04-10Bibliographically approved
In thesis
1. Bridging Scales – Nanofabrication and Microfluidics for Sensing and Cell Culture Platforms
Open this publication in new window or tab >>Bridging Scales – Nanofabrication and Microfluidics for Sensing and Cell Culture Platforms
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biology and medicine have seen groundbreaking discoveries, from ion channels to induced pluripotent stem cells, resulting in a paradigm shift. The advancements in physical sciences and engineering have always been pivotal in unlocking mysteries of biology and highlighting that the new frontiers lie in deepening our understanding at the single-cell and single-molecule levels. Applying different physical and engineering principles sheds new light on our understanding of complex biological systems at the single-cell and single-molecule level, enabling the development of various technologies such as single-molecule detection, organ-on-chip platforms, and organoids. The development of these technologies offers valuable insights into disease progression and personalized therapeutic strategies. The advancements in micro and nanofabrication propel the development of sensing platforms and biological devices that pave the way for novel solutions, ensuring the best of both worlds. This thesis aims to contribute to advancing the fields of single-molecule sensing and cell therapy by integrating biological discoveries and engineering advancements to develop novel engineering toolboxes. 

The first part of this thesis introduces and describes two approaches for single-molecule sensing and detection, specifically tunneling nanogaps and solid-state nanopore-based sensing platforms. The first work reports the custom measurement setup built during the project, which facilitates automated probing and testing arrays with hundreds of tunnel junctions in liquid with integrated microfluidics, current in the pA range, and at sampling rates up to 200 kHz. This setup highlights key electrical and microfluidic components and design choices to achieve a scalable measurement method, providing a platform for further studies and development in this field and enabling the potential for dynamic sensing. The second work in this thesis investigates the fabrication and electrical behavior of tunnel junctions in various gaseous and liquid media by feedback-controlled electromigration of microfabricated gold nanoconstrictions. This work maps the conductance stability and characteristics of the resulting tunnel junctions, highlighting various considerations and challenges in working with on-chip integrated tunnel junctions to guide future efforts. 

In the third work, we shift our focus to solid-state nanopores and demonstrate that the nanopores fabricated by controlled dielectric breakdown could be localized at the site of femtosecond laser exposure on a pristine silicon nitride membrane. We analyze the sensing potential of these nanopores by the translocation of double-stranded DNA through the pores. The fourth work uses the solid-state nanopore platform to detect and study the binding of Estrogen Receptor Alpha to the Estrogen Receptor Elements on the DNA. The work on tunnel junction and solid-state nanopore-based sensing modalities holds potential for further development in the field of single-(bio)molecule sensing.

The second part of this thesis presents a microfluidic chip platform that enables simple and fast reprogramming of somatic cells, such as fibroblasts, into induced pluripotent stem cells (iPSCs). These iPSCs can then be differentiated further into functional ectodermal cell types towards neural lineage, resulting in neural stem cells on the chip. Furthermore, using bulk-RNA sequencing, we observed that the microfluidic platform boosted commitment toward generating neural stem cells while reducing biological variability compared to a conventional well plate. Our method provides a simple platform with considerably reduced reagent requirements, cellular input, and manual labor, leading to substantial cost savings and holding potential for the highly controlled generation of clinical-grade iPSCs and differentiated cells for cellular therapeutics.

Abstract [sv]

Banbrytande upptäckter inom biologi och medicin, från jonkanaler till inducerade pluripotenta stamceller, har resulterat i ett paradigmskifte. Framsteg inom fysik och ingenjörsvetenskap har varit avgörande för att avslöja biologins mysterier och belysa att framtidens nya avancemang ligger i att fördjupa vår förståelse på enskild cell- och molekylnivå. Genom att tillämpa olika fysikaliska och ingenjörsvetenskapliga principer får vi nya insikter gällande komplexa biologiska system på dessa nivåer, vilket möjliggör utvecklingen av olika teknologier såsom detektion av enskilda molekyler, organ-på-chip-plattformar och organoider. Utvecklingen av dessa teknologier ger värdefulla insikter för sjukdomsprogressioner och individanpassade terapeutiska strategier. Framstegen inom mikro- och nanofabrikation driver utvecklingen av sensorplattformar och biologiska enheter som banar väg för nya lösningar där det bästa från två världar förenas. Denna avhandling syftar till att bidra till utvecklingen av fälten för enskild molekyl-detektion och cellterapi genom att integrera biologiska upptäckter med ingenjörsvetenskapliga framsteg för att skapa nya teknologiska verktyg.

Den första delen av denna avhandling introducerar och beskriver två metoder för detektion av enskilda molekyler, specifikt tunnel-nanogap och fasta nanoporer som sensorplattformar. Den första studien rapporterar om den specialanpassade mätuppställning som byggdes under projektet och som möjliggör automatiserad avläsning och testning av arrays med hundratals tunnelövergångar i vätska med integrerad mikrofluidik, strömmar i pA-området och samplingsfrekvenser upp till 200 kHz. Systemet belyser viktiga elektriska och mikrofluidiska komponenter samt de designval som krävs för att uppnå en skalbar mätmetod, vilket skapar en plattform för vidare studier och utveckling inom detta fält och möjliggör potentialen för dynamisk detektion. Den andra studien i denna avhandling undersöker tillverkningen och den elektriska funktionen hos tunnelövergångar i olika gas- och vätskemedier genom återkopplingsstyrd elektromigration av mikrofabrikerade guldkonstriktioner. Detta arbete kartlägger ledningsstabiliteten och egenskaperna hos de resulterande tunnelövergångarna och belyser olika överväganden och utmaningar vid arbete med on-chip-integrerade tunnelövergångar för att vägleda framtida insatser.

I den tredje studien skiftar vi fokus till fasta nanoporer och demonstrerar att nanoporer, som skapats genom kontrollerad dielektrisk nedbrytning, kan lokaliseras till platsen för femtosekundslaserexponering på ett orört kiselnitridmembran. Vi analyserar sensorpotentialen hos dessa nanoporer genom translokation av dubbelsträngat DNA genom porerna. Den fjärde studien använder den fasta nanoporplattformen för att detektera och studera bindningen av östrogenreceptor alfa till östrogenreceptor-element på DNA. Arbetet med tunnelövergångar och fasta nanoporbaserade sensorplattformar har potential för vidare utveckling inom fältet för enskild-(bio)molekyl-detektion.

Den andra delen av denna avhandling presenterar en mikrofluidisk chip-plattform som möjliggör enkel och snabb omprogrammering av somatiska celler, såsom fibroblaster, till inducerade pluripotenta stamceller (iPSCs). Dessa iPSCs kan sedan vidare differentieras till funktionella ektodermala celltyper mot neural linje, vilket resulterar i neurala stamceller på chipet. Vidare observerade vi genom bulk-RNA-sekvensering att den mikrofluidiska plattformen främjade genererering av neurala stamceller samtidigt som den minskade biologisk variation jämfört med en konventionell brunnsplatta. Vår metod tillhandahåller en enkel plattform med avsevärt minskade reagenskrav, cellinsatser och manuellt arbete, vilket leder till betydande kostnadsbesparingar och har potential för högkontrollerad produktion av kliniskt godkända iPSCs och differentierade celler för cellulära terapier.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xvi, 111
Series
TRITA-EECS-AVL ; 2025:37
Keywords
nanotechnology, single-molecule sensing, solid-state nanopore, nanofabrication, microfluidics, tunnel junction, induced pluripotent stem cells, cell reprogramming
National Category
Nanotechnology
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-362324 (URN)978-91-8106-236-6 (ISBN)
Public defence
2025-05-09, https://kth-se.zoom.us/j/67018776035, F3, Lindstedtsvägen 26-28, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20250411

Available from: 2025-04-11 Created: 2025-04-10 Last updated: 2025-04-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Raja, Shyamprasad NatarajanJain, SaumeyKipen, JavierJaldén, JoakimStemme, GöranHerland, AnnaNiklaus, Frank

Search in DiVA

By author/editor
Raja, Shyamprasad NatarajanJain, SaumeyKipen, JavierJaldén, JoakimStemme, GöranHerland, AnnaNiklaus, Frank
By organisation
Micro and NanosystemsScience for Life Laboratory, SciLifeLabNano BiotechnologyInformation Science and EngineeringCenter for the Advancement of Integrated Medical and Engineering Sciences, AIMES
In the same journal
Review of Scientific Instruments
Nano TechnologyElectrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 111 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf