Exploring Infant Movement Patterns Through Unsupervised Machine Learning
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE credits
Student thesisAlternative title
Utforskning av Spädbarns Rörelsemönster Genom Oövervakad Maskininlärning (Swedish)
Abstract [en]
Environmental factors can subtly shape our motor skills from infancy, where infants transition from spontaneous to coordinated movements. This early development, largely unaffected by varied surroundings, offers a unique insight into the natural evolution of motor abilities. This thesis utilises unsupervised machine learning (UML) to analyse spontaneous infant movements through preprocessed video-recorded data. Principal Component Analysis (PCA) and autoencoders were applied to break down the complex data into more manageable parts. Following this, k-means clustering was used to try to identify distinct patterns. A Random Forest Classifier and silhouette score was used to analyse the clusters, along with a heatmap to analyse the dimensionality reduction. Although the clustering did not yield well-defined groups, it uncovered significant insights into the variability and complexity of infant movements. These observations align with General Movements Assessment (GMA) principles, which also recognise movement variability as a marker of neurological health. The absence of distinct movement patterns might be attributed to the infants’ limited exposure to environmental influences.
Abstract [sv]
Faktorer i miljön kan subtilt forma våra motoriska färdigheter redan från spädbarnsåldern, där spädbarn övergår från spontana till koordinerade rörelser. Denna tidiga utveckling, som till stor del inte har hunnit påverkas av olika omgivningar, erbjuder en unik inblick i de naturliga utvecklingsstegen för motoriska förmågor. Denna avhandling använder oövervakad maskininlärning (UML) för att analysera spontana spädbarnsrörelser genom förbehandlad videodata. Principalkomponentsanalys (PCA) och autoencoders tillämpades för att förenkla de komplexa datamängderna till mer hanterbara delar. Efter detta användes k-means klusteranalys för att försöka identifiera distinkta mönster. En Random Forest-Klassificerare och silhuettvärde användes för att analysera klustren, tillsammans med en värmekarta för att undersöka dimensionsreduktionerna. Även om klustringen inte resulterade i väldefinierade grupper, avslöjade den betydande insikter i variationen och komplexiteten i spädbarnsrörelserna. Dessa observationer framhäver principerna för General Movements Assessment (GMA), som också betonar rörelsevariabilitet som en markör för neurologisk hälsa. Spädbarnens brist på distinkta rörelsemönster kan möjligen förklaras av deras begränsade exponering av miljöfaktorer.
Place, publisher, year, edition, pages
2024. , p. 34
Series
TRITA-EECS-EX ; 2024:316
Keywords [en]
Infant Motor Skills Development, Unsupervised Machine Learning (UML), Principal Component Analysis (PCA), Autoencoders, k-means Clustering, Movement Variability, General Movements Assessment (GMA)
Keywords [sv]
Spädbarns motoriska färdighetsutveckling, Oövervakad maskininlärning (UML), Principalkomponentanalys (PCA), Autoencoders, k-means klusteranalys, Rörelsevariabilitet, General Movements Assessment (GMA)
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-350946OAI: oai:DiVA.org:kth-350946DiVA, id: diva2:1885526
Supervisors
Examiners
2024-08-202024-07-232024-08-20Bibliographically approved