kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative Performance of Binary vs. Multi-to-Binary Gastrointestinal Image Classification: Using YOLOv8 on Video Capsule Endoscopy Images of Crohn’s Disease Patients
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Jämförelse av Binär- och Multi-till-Binär Klassificering av Gastrointestinala Bilder med YOLOv8 på Videokapselendoskopier från Patienter med Crohns Sjukdom (Swedish)
Abstract [en]

Crohn’s disease is a chronic inflammatory bowel condition that can lead to severe symptoms and complications within the gastrointestinal tract. In Europe alone, approximately 1 in 310 people are diagnosed with Crohn’s disease. A common diagnostic tool for this condition is capsule endoscopy, which captures around 50,000 images of the gastrointestinal tract to identify pathological lesions. Computer-aided diagnosis is already being explored for early detection of cancers, cardiovascular diseases, and other conditions. In this study, we investigate the capability of the YOLOv8 convolutional neural network to perform binary image classification on an endoscopic image dataset with a class imbalance problem. Our findings demonstrate that a multi-class trained YOLOv8 model that uses oversampling as a class imbalance solution can effectively differentiate between normal and pathological states, achieving 93.4% accuracy.

Abstract [sv]

Crohns sjukdom är en kronisk inflammatorisk tarmsjukdom som kan medföra allvarliga symtom och komplikationer inom mag-tarmkanalen. Enbart i Europa är ungefär 1 av 310 personer drabbade av Crohns sjukdom. Ett vanligt verktyg för att diagnostisera Crohn’s sjukdom är kapselendoskopi, ett ingrepp där runt 50 000 bilder av mag-tarmkanalen tas för att identifiera patologiska förändringar. Datorstödd diagnostik utforskas redan för tidig upptäckt av cancer, hjärt-kärlsjukdomar och andra tillstånd. I denna studie undersöker vi kapaciteten hos YOLOv8-konvolutionella neurala nätverk att utföra binär bildklassificering på en endoskopisk bilddatabas med ett problem med klassobalans. Våra resultat visar att en YOLOv8-modell, tränad för flera klasser och med översampling som lösning på klassobalansen, effektivt kan skilja mellan normala och patologiska tillstånd, med en noggrannhet på 93,4%.

Place, publisher, year, edition, pages
2024. , p. 33
Series
TRITA-EECS-EX ; 2024:376
Keywords [en]
Convolutional neural networks, YOLOv8, Crohn’s disease, image classification, class imbalance
Keywords [sv]
Konvolutionella neurala nätverk, YOLOv8, Crohns sjukdom, bildklassificering, klassobalans
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-351168OAI: oai:DiVA.org:kth-351168DiVA, id: diva2:1886394
Supervisors
Examiners
Available from: 2024-08-23 Created: 2024-08-01 Last updated: 2024-08-23Bibliographically approved

Open Access in DiVA

fulltext(1619 kB)110 downloads
File information
File name FULLTEXT01.pdfFile size 1619 kBChecksum SHA-512
deded804d81a26ffa6d931268fe6fd4ab3d09bd8ffa4a072d46d85e501af78c2415fc64790f2379e6adbdf93c7c77bb5231390014719e9e8b9142e6be311e873
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 110 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 253 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf