kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CLRiuS: Contrastive Learning for intrinsically unordered Steel Scrap
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0009-0000-7197-3051
SHS Stahl Holding Saar GmbH & Co KGaA, Digitalizat & AI, D-66763 Dillingen, Germany..
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process.ORCID iD: 0000-0002-6127-5812
2024 (English)In: MACHINE LEARNING WITH APPLICATIONS, ISSN 2666-8270, Vol. 17, article id 100573Article in journal (Refereed) Published
Abstract [en]

There has been remarkable progress in the field of Deep Learning and Computer Vision, but there is a lack of freely available labeled data, especially when it comes to data for specific industrial applications. However, large volumes of structured, semi-structured and unstructured data are generated in industrial environments, from which meaningful representations can be learned. The effort required for manual labeling is extremely high and can often only be carried out by domain experts. Self-supervised methods have proven their effectiveness in recent years in a wide variety of areas such as natural language processing or computer vision. In contrast to supervised methods, self-supervised techniques are rarely used in real industrial applications. In this paper, we present a self-supervised contrastive learning approach that outperforms existing supervised approaches on the used scrap dataset. We use different types of augmentations to extract the fine-grained structures that are typical for this type of images of intrinsically unordered items. This extracts a wider range of features and encodes more aspects of the input image. This approach makes it possible to learn characteristics from images that are common for applications in the industry, such as quality control. In addition, we show that this self-supervised learning approach can be successfully applied to scene-like images for classification.

Place, publisher, year, edition, pages
Elsevier BV , 2024. Vol. 17, article id 100573
Keywords [en]
Artificial intelligence, Self-supervised learning, Steel scrap
National Category
Computer graphics and computer vision
Identifiers
URN: urn:nbn:se:kth:diva-351638DOI: 10.1016/j.mlwa.2024.100573ISI: 001270213700001OAI: oai:DiVA.org:kth-351638DiVA, id: diva2:1888521
Note

QC 20240813

Available from: 2024-08-13 Created: 2024-08-13 Last updated: 2025-02-24Bibliographically approved
In thesis
1. An AI-powered holistic system for optimizing the usage of steel scrap in steel production
Open this publication in new window or tab >>An AI-powered holistic system for optimizing the usage of steel scrap in steel production
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The steel industry is currently in a transformation process in order to be able to produce in a more environment-friendly way in the future. The secondary raw material steel scrap plays a crucial role in this transformation, as recycling scrap in the manufacturing process is environmentally friendly and sustainable. However, the increased use of steel scrap in the steel industry involves new challenges. Processes must be changed, product quality must be maintained and the increased throughput and demand for scrap must be managed. Digitalization and the use of AI technologies can help to optimize and automate the new processes.

When using AI in an industrial environment, there is often the challenge that not enough data of sufficient quality is available. In order to close this gap, a new freely available dataset of European scrap classes, was created and used in this work by applying a novel tilling technique. The creation and even more the annotation of such domain-specific datasets requires a lot of time and expert knowledge. For this reason, a self-supervised approach was implemented using different types of augmentations to extract the fine-grained structures typical for intrinsic disordered objects such as steel scrap. These results were used to control the scrap input as well as the scrap usage and thus automate the process.

The scrap used in the steel production process usually varies in origin and composition, which makes the compilation more difficult. When compiling the scrap mix, steel producers often rely on experience or have to carry out complex trials. A machine learning approach was implemented that can be used to simulate and optimize different scrap compositions. Based on these models, a new approach was developed to estimate the chemical content of the input materials used from standard process parameters without the use of additional sensors.

The integration of AI-models in a heterogeneous industrial environment is a major challenge. Ambient infrastructure needs to be adapted or created as required.To enable the various solutions to be embedded, the different machine learning technologies were combined, required infrastructure was set up as required and online models and interfaces were implemented for productive use. 

In summary, this thesis presents an AI-powered holistic system that combines various technologies, optimizes steel scrap processes, and automates the scrap workflow from scrap entry to the end of the basic oxygen furnace process.

Abstract [sv]

Stålindustrin befinner sig just nu i en omvandlingsprocess för att i framtiden kunna producera på ett mer miljövänligt sätt. Den sekundära råvaran stålskrot spelar en avgörande roll i denna omvandling, eftersom återvinning av skrot i tillverkningsprocessen är både miljövänligt och hållbart. Den ökade användningen av stålskrot i stålindustrin innebär dock nya utmaningar. Processer måste förändras, produktkvalitet måste upprätthållas och det ökade flödet och efterfrågan på skrot måste hanteras. Digitalisering och användning av AI-teknik kan hjälpa till att optimera och automatisera de nya processerna.

När AI används i en industriell miljö finns ofta utmaningen att det inte finns tillräckligt med data av tillräcklig kvalitet. För att täppa till detta gap, presenteras en fritt tillgänglig datauppsättning av europeiska skrotklasser, som skapades med en ny AI-teknik (”tiling”), i denna avhandling. Skapandet och annoteringen av sådana domänspecifika datamängder kräver mycket tid och expertkunskap. Av denna anledning implementerades ett självövervakat tillvägagångssätt med hjälp av olika typer av förstärkningar för att extrahera de finkorniga strukturerna som är typiska för inre oordnade föremål som stålskrot. Dessa resultat användes för att kontrollera skrotinmatningen såväl som skrotanvändningen och på så sätt automatisera processen.

Skrotet som används i stålproduktionsprocessen varierar vanligtvis i ursprung och sammansättning, vilket försvårar sammansättningen. Vid sammanställningen av skrotblandningen förlitar sig stålproducenterna ofta på erfarenhet eller komplexa försök. En maskininlärningsmetod implementerades som kan användas för att simulera och optimera olika skrotsammansättningar. Dessutom utvecklades ett nytt tillvägagångssätt baserat på dessa modeller för att uppskatta det kemiska innehållet i de ingående materialen som används från standardprocessparametrar utan användning av ytterligare sensorer.

Integreringen av AI-modeller i en heterogen industriell miljö är en stor utmaning. Omgivande infrastruktur måste anpassas eller skapas efter behov. För att de olika lösningarna skulle kunna bäddas in, kombinerades de olika maskininlärningsteknologierna, infrastrukturen sattes upp efter behov och online modeller och gränssnitt implementerades för produktivt bruk.Sammanfattningsvis presenterar denna avhandling ett AI-drivet holistiskt system som kombinerar olika teknologier och optimerar och automatiserar skrotprocessen från skrotinträde till slutet av konverterprocessen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 83
Series
TRITA-ITM-AVL ; 2025:7
Keywords
AI, Steelmaking, Steel scrap
National Category
Materials Engineering Computer and Information Sciences
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-360298 (URN)978-91-8106-210-6 (ISBN)
Public defence
2025-03-28, F3 / https://kth-se.zoom.us/j/68692480767, Lindstedtvägen 26-28, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
EU, Horizon Europe, 101058694
Available from: 2025-02-27 Created: 2025-02-24 Last updated: 2025-03-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Schäfer, MichaelGlaser, Björn

Search in DiVA

By author/editor
Schäfer, MichaelGlaser, Björn
By organisation
Materials Science and EngineeringProcess
Computer graphics and computer vision

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf