kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
EDAF: An End-to-End Delay Analytics Framework for 5G-and-Beyond Networks
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control). KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0002-6328-0113
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0001-6682-6559
2024 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Supporting applications in emerging domains like cyber-physical systems and human-in-the-loop scenarios typically requires adherence to strict end-to-end delay guarantees. Contributions of many tandem processes unfolding layer by layer within the wireless network result in violations of delay constraints, thereby severely degrading application performance. Meeting the application's stringent requirements necessitates coordinated optimization of the end-to-end delay by fine-tuning all contributing processes. To achieve this task, we designed and implemented EDAF, a framework to decompose packets' end-to-end delays and determine each component's significance for 5G network. We showcase EDAF on OpenAirInterface 5G uplink, modified to report timestamps across the data plane. By applying the obtained insights, we optimized end-to-end uplink delay by eliminating segmentation and frame-alignment delays, decreasing average delay from 12ms to 4ms.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2024.
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:kth:diva-352157DOI: 10.1109/INFOCOMWKSHPS61880.2024.10620853ISI: 001300418400140Scopus ID: 2-s2.0-85196346420OAI: oai:DiVA.org:kth-352157DiVA, id: diva2:1891557
Conference
11th International Workshop on Computer and Networking Experimental Research using Testbeds (CNERT 2024)
Note

QC 20240823

Part of ISBN 979-8-3503-8447-5

Available from: 2024-08-22 Created: 2024-08-22 Last updated: 2025-05-09Bibliographically approved
In thesis
1. Predictability, Prediction, and Control of Latency in 5G and Beyond: From Theoretical to Data-Driven Approaches
Open this publication in new window or tab >>Predictability, Prediction, and Control of Latency in 5G and Beyond: From Theoretical to Data-Driven Approaches
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The explosive growth of mobile communication and the proliferation of real-time applications, such as industrial automation and extended reality (XR), have created unprecedented demands for ultra-reliable low-latency communication (URLLC) in wireless networks. For example, in industrial closed-loop control systems, data must be transmitted within a target delay of atmost a few milliseconds; violations can lead to costly failures and, there-fore, must occur with probabilities below 0.0001 (or, reliability above 0.9999).This dissertation addresses the critical challenge of end-to-end latency pre-diction and control in these dynamic and stochastic environments, bridging the gap between the inherent randomness of wireless communication and the deterministic performance guarantees required by time-sensitive applications.

In this thesis, we adopt a twofold approach, combining rigorous theoretical analysis with practical, data-driven methodologies. First, we introduce a framework for analyzing predictability that quantifies the inherent limits of latency forecasting in communication networks. Through analysis of Marko-vian systems, including single-hop and multi-hop queues, exact expressions and spectral-based upper bounds for predictability are derived, revealing the crucial influence of network topology, state transitions, and observation defects. Building on this foundation, we developed and implemented data-driventechniques for probabilistic delay prediction. A key contribution is a tail-optimized prediction method that integrates Extreme Value Theory (EVT) within a mixture density network framework, significantly enhancing the accuracy of predicting rare, high-latency events critical for URLLC. To demonstrate the practical utility of these predictions, ”Delta,” a novel active queue management scheme, is introduced. Delta integrates real-time delay violation probability predictions into packet-dropping decisions, dynamically adapting to delay variations and significantly reducing delay violations. To validate these approaches, the ExPECA testbed and EDAF framework were developed, enabling fine-grained delay measurement and decomposition in real 5G systems. Extensive experiments on both commercial off-the-shelf5G and software-defined radio-based Open Air Interface platforms confirmedthe superior accuracy and efficiency of the proposed EVT-enhanced models.

Furthermore, temporal prediction models, leveraging LSTM and Transformer architectures, were developed and shown to achieve higher accuracy comparedto the baseline approaches in real 5G network experiments, capturing the time-varying dynamics of wireless networks and providing accurate multi-step forecasts. This dissertation advances latency prediction and control for wireless networks, offering both theoretical foundations and practical solutions for time-sensitive applications. These findings have significant implications for designing and operating next-generation wireless networks, paving the way for more dependable communication. Future work should focus on integrating these prediction models to optimize the network and extending the framework to encompass broader quality of service metrics and emerging wireless technologies.  

Abstract [sv]

Den explosionsartade tillväxten av mobil kommunikation och spridningen av realtidsapplikationer, såsom industriell automation och utökad verklighet (XR), har skapat enastående krav på ultratillförlitlig kommunikation med låg fördröjning (URLLC) i trådlösa nätverk. Till exempel måste data i industriella slutna styrsystem ¨överföras inom en deadline på högst några millisekunder; ¨överträdelser kan leda till kostsamma fel och måste därför inträffa med sannolikheter under 0,0001 (eller, en tillförlitlighet över 0,9999). Denna avhandling behandlar den kritiska utmaningen att prediktera och kontrollera fördröjningen mellan sändare till mottagare i dessa dynamiska och stokastiska miljöer, och minskar skillnaden mellan den inneboende slumpmässigheten i trådlös kommunikation och de deterministiska prestandagarantier som krävs av tidskänsliga applikationer. I denna avhandling antas en tvådelad metod som kombinerar noggrann teoretisk analys med praktiska, datadrivna metoder. Först introduceras ett ramverk för att analysera förutsägbarhet som kvantifierar de inneboende gränserna för fördröjningsprognoser i kommunikationsnätverk. Genom att studera Markovsystem, däribland enkel- och multihoppköer, härleds exakta uttryck och spektrumbaserade övre gränser för förutsägbarhet, vilket belyser hur nätverkstopologi, tillståndsövergångar och observationsdefekter påverkar resultaten.

Utifrån denna grund utvecklades och implementerades datadrivna tekniker för probabilistisk fördröjningsprediktion. Ett viktigt bidrag är en metod för prediktion som integrerar extremvärdesteori (EVT) i ett ramverk för blandningstäthetsnätverk, vilket avsevärt förbättrar förmågan att prediktera sällsynta, höga fördröjningar som är avgörande för URLLC. För att demonstrera den praktiska nyttan av dessa prediktioner presenteras ”Delta,”ett nytt aktivt köhanteringssystem. Delta integrerar, i realtid, prediktioner av sannolikheten för fördröjningsöverträdelser i beslutsprocessen för paketborttagning, vilket minskar fördröjningsöverträdelser avsevärt.

För att validera dessa metoder utvecklades testbädden ExPECA och ramverket EDAF, som möjliggör högupplösta mätningar och uppdelning av fördröjningens komponenter i verkliga 5G-system. Omfattande experiment på både kommersiell 5G-utrustning och mjukvarudefinierade radioplattformar baserade på Open Air Interface bekräftade den förbättrade noggrannheten och effektiviteten hos de föreslagna EVT-förbättrade modellerna. Vidare utvecklades temporala prediktionsmodeller som använder LSTM- och Transformer-arkitekturer som visade högre träffsäkerhet än referensmetoder i verkliga 5G-nätverksexperiment, då de fångar de tidsvarierande dynamikerna i trådlösa nätverk och möjliggör exakta flerstegsprognoser.

Denna avhandling driver framåt forskningen om fördröjningsprediktion och -kontroll i trådlösa nätverk och erbjuder både teoretiska grunder och praktiska lösningar för tidskänsliga applikationer. Resultaten har stor betydelse för utformningen och driften av nästa generations trådlösa nätverk och banar väg för mer pålitlig kommunikation. Framtida arbete ska/borde/kan (will/should/can) fokusera på att integrera dessa prediktionsmodeller för att optimera nätverket, och utvidga ramverket till att omfatta bredare kvalitetsmätningar och nya trådlösa teknologier.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xii, 79
Series
TRITA-EECS-AVL ; 2025:54
National Category
Communication Systems
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-363256 (URN)978-91-8106-285-4 (ISBN)
Public defence
2025-06-09, https://kth-se.zoom.us/s/68395855098, D3, Lindstedtvägen 9, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20250509

Available from: 2025-05-09 Created: 2025-05-09 Last updated: 2025-05-12Bibliographically approved

Open Access in DiVA

fulltext(1215 kB)101 downloads
File information
File name FULLTEXT01.pdfFile size 1215 kBChecksum SHA-512
97d03afa40d74643be94f527b013f7c0516240b3ca4754813224bb4aa2a5e917fc7a1ad786869975e3087c77823a0849aa567072bf25b4f5984155cda8eec3f0
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Mostafavi, Seyed SamieSharma, Gourav PrateekGross, James

Search in DiVA

By author/editor
Mostafavi, Seyed SamieSharma, Gourav PrateekGross, James
By organisation
Decision and Control Systems (Automatic Control)Information Science and Engineering
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 101 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 197 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf