kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring spatial and temporal resolution in energy modelling for developing economies’electricity systems
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems.ORCID iD: 0000-0002-8641-564X
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Agenda 2030, with its 17 Sustainable Development Goals (SDGs), has set the direction on where development should be focussed. There are still around 675 million people who lack access to electricity (SDG7.1 – electricity access), mainly in Sub-Saharan Africa. 

Focusing on SDG7.1 and electricity access in developing economies, the transition has a short timeline, and the current reach of the electricity network is low in many of the countries with low electrification rates. Other supply options, solar PV and wind, have also had a dramatic decrease in cost over the last decade and do not need to be connected to a central grid, operating as a stand-alone or mini-grid. SDG7.1 and the transition of the electricity system pose new challenges for energy modelling, with a need to increase the spatial resolution as the location of the unelectrified population is a key parameter to understand. At the same time, understanding the overall electricity systems transition with increasing demands with economic growth, climate change and CO2 mitigation can increase tensions in the system while reaching SDG7.1.

Modelling electricity access increases the number of technologies and details needed in the system which in turn increases the complexity of the models, particularly spatial, temporal and mathematical. However, more detail, both parametrical and structural, can introduce more potential errors and uncertainty into the model. Therefore, energy models should be as simple as possible and as complex as necessary.

This thesis aims to give qualitative and quantitative insights into the mathematical, spatial, and temporal aspects of electricity systems modelling for electricity access in developing economies. The thesis analyses trade-offs between heuristic and linear programming methods when modelling electricity access, and the global sensitivity and relative importance of parametrical and structural parameters in ESOMs.

The method for achieving the aim of the thesis uses a four-step approach and is developed over the four papers appended to the thesis. First, the geospatial electrification problem is explored using two modelling methods:  a linear programming method, using the linear programming model generator GEOSeMOSYS specifically derived as part of this thesis; and a heuristic method, soft-linking the open-source tools OnSSET and OSeMOSYS. Second, these two models are compared with respect to computational effort,  insights derived from results, and detail – this all with regards to modelling electricity access in a developing economy. Third, using  GEOSeMOSYS and the method of Morris for global sensitivity analysis, the relative importance of spatial and temporal resolution, compared to other parameters (e.g., demand, discount rate, and capital cost) was examined. Finally, the global sensitivity analysis method of factor mapping, using scenario discovery was used for further analysing the relative important parameters that determine cost and low-carbon dioxide futures in the regional multi-country energy systems optimisation model ‘South America Model Base’ (SAMBA).

The results show that, for the modelled pathways, the two methods for electricity access show similar trends when the demand is changed, with low demand predominantly resulting in PV panels and batteries to serve the formerly unelectrified population, while higher demand results in more grid-connected households. The targeted demand level and profile for to-be-electrified households affect the optimal technology choices, and one such example is highlighted in the supply option of PV with battery. The cost competitiveness of PV panels with batteries decreases significantly when the demand profile increases during the night, meaning that when more continuously operated appliances are added, the PV and battery will not be cost-optimal in most cases – connecting to the grid is then the least cost choice. The two presented methods have different solution times with the linear programming method having a much longer solution time. The mathematical approaches to solving the transmission network are different, and both methods have trade-offs in their methods. These trade-offs are in the mathematical approach where OnSSET uses an exclusive technology selection optimisation leading to a suboptimal overall network, and GEOSeMOSYS rely on the assumption of linearity, which leads to very small incremental installations of transmission lines which in practice is not realistic.

The global sensitivity analysis of GEOSeMOSYS for electricity access showed that structural parameters: spatial and temporal resolution largely influence the result parameters and cannot be simplified without changing the results. The temporal resolution had a slightly greater relative influence on the assessed results parameters than the spatial resolution. This means that the results change for both the renewable electricity production share and the extent to which the unelectrified population gets connected to the grid/mini-grid as opposed to stand-alone. The scenario discovery analysis for understanding low-cost, low-carbon dioxide pathways pointed to the relative importance of demand. Together with low/medium discount rates, the low/medium demand was relatively the most important parameter for the South American case.

This thesis has therefore shown that, even though models should be as simple as possible, the spatial and temporal resolution cannot be simplified to a one-node analysis or low temporal resolution without this affecting the results when modelling electricity access. The mathematical choice for selecting the method of electricity access was analysed and trade-offs were highlighted. The main trade-off was in the network expansion where both methods use approximations that can lead to potential over/underestimating the investment need. 

The consistent results of PV and battery adds questions if the soft-linked method is necessary when modelling at very low demands, as the interactions between them two was low at low demands for the unelectrified population. 

The soft-linked method is, however, a good option on a higher level to explore electricity access and the implications on the whole electricity system. If the question is more complex (e.g., adding transportation, heating and cooling), then GEOSeMOSYS provides more readily available options for expanding the analysis, but at a coarse spatial resolution. Demand is a highly influential parameter, relative to other parameters such as discount rate, and learning rates for renewable energy technologies. Demand determines both the cost and the potential for achieving low-carbon dioxide futures. This thesis has explored the relative importance of parameters for electricity access and decarbonisation pathways on a national and continental level. The relative importance can differ depending on the energy system that is studied, calling for more research on different types of energy systems.

Abstract [sv]

Omställningen av det globala energisystemet är pådrivet av många faktorer såsom klimatförändringar, ekonomiska och sociala faktorer. Agenda 203o, med de 17 globala målen för hållbar utveckling, har satt fokus på var den globala utvecklingen ska ligga. Denna avhandling fokuserar på globala mål 7 och 13. Det är fortfarande ca 675 miljoner människor som idag lever utan tillgång till elektricitet (globala mål 7.1), varav de allra flesta lever i Afrika söder om Sahara. Gällande utsläppen av växthusgaser så står energisystemet för den allra största delen, och denna utmaning att minska växthusgasutsläppen är knutet till globala mål 13.

Omställningen som energisystemet står inför kräver planering för att förstå hur man ska nå dessa viktiga mål. Ett sätt att stötta planeringsprocessen är genom energimodeller som kan bidra med insikter kring olika avvägningar som kan uppstå i omställningen av systemet. För Globala mål 7.1, så finns specifika utmaningar där en stor del av befolkningen söder om Sahara bor långt ifrån det existerande elnätet, och nya billiga energikraftslag såsom solpaneler och vindkraftverk kan operera utan att vara uppkopplade på elnätet som off-grid lösningar. Dessa energislag varierar både rumsligt och i tid, och energimodellerna behöver kunna ta hänsyn till detta för att förstå deras potential och påverkan i elsystemet. Energimodellerna behöver även fånga potentiell expansion av transmissions- och distributionsnätet, vilket kräver ökad rumslig detaljrikedom.

Denna avhandling avser att ge insikter kring kvalitativa och kvantitativa avvägningar kring matematisk metod, rumsliga och temporala aspekter inom energimodellering för access till elektricitet (globala mål 7.1), tillämpat på nationell nivå. Olika avvägningar kring valet av matematisk metod för att modellera länder med låg tillgång till elektricitet, samt känsligheten för ändringar i parametrar och struktur i energisystemmodeller utforskas både på nationell och multinationella elsystem.

Metoden för att nå målet i avhandlingen är fyrdelad: Först utvecklas två olika metoder för att modellera elektrifiering av hushåll som saknar elektricitet i ett land där tillgången till modern energi är låg. Den första kopplar samman två modeller med öppen källkod: OnSSET och OSeMOSYS. Den andra metoden utvecklar sättet på vilken den rumsliga dimensionen kan bättre modelleras för just globala mål 7.1 i OSeMOSYS och kallas för GEOSeMOSYS. En jämförelse av dessa två metoder görs för att förstå skillnader i beräkningstid, vilka insikter som modellerna kan ge och hur detaljrika modellerna är att modellera elektrifiering av länder med låg tillgång till modern energi. För att förstå känsligheten i elektrifieringsmodellen som utvecklats i denna avhandling, GEOSeMOSYS, utvärderas den rumsliga och temporala känsligheten mot andra parametrar såsom kostnader, diskonteringsränta och olika efterfrågenivåer. Slutligen används känslighetsanalys för att förstå vilka parametrar som kan möjliggöra låga kostnader samt låga koldioxidutsläpp i den sydamerikanska kontinenten ur ett långtidsperspektiv.

Resultaten för elektrifiering av länder med låg access till elektricitet från jämförelsen av de två metoderna utvecklade i denna avhandling visar liknande trender, med hög penetration av solpaneler när elbehovet är lågt, men att när behovet ökar så blir det mer kostnadsekonomiskt att bygga ut elnätet. GEOSeMOSYS tar ca 40 gånger längre tid att optimera för det länga körningen jämfört med den sammankopplade metoden med OSeMOSYS och OnSSET. Metoden för att optimera elnätverket för de två olika metoderna skiljer sig åt och ger därför något olika utfall, båda med kompromisser i exakthet. Detta beror på den matematiska metoden där OnSSET optimerar en-åt-gången, vilket kan ge suboptimala resultat med exempelvis parallella transmissionsledningar. GEOSeMOSYS å andra sidan bygger på antagandet om att utbyggnaden av elsystemet är linjärt, vilket leder till väldigt små installationer av kapacitet för transmissionsnätet till relativt låga kostnader.

Vid låga elbehov för de hushåll som saknar el så visade den sammankopplade metoden med OnSSET och OSeMOSYS att det var väldigt låg interaktion. Modellerna kan därför vara tillräckligt goda att köra var för sig för att minska komplexiteten så länge man har et bra estimat på kostnaden per kWh från elnätet.

Känslighetsanalysen visar att både de rumsliga och temporala dimensionerna i energimodellerna påverkar utfallet, vilket gör att de inte kan modelleras på en väldigt låg rumslig eller temporal nivå utan att påverka resultaten. En något högre känslighet påvisades för den temporala nivån jämfört med den rumsliga nivån. Vidare visar känslighetsanalysen för Sydamerika att scenarion med låga koldioxidutsläpp kan nås genom att hålla elbehovet och diskonteringsräntan på en låg nivå.

Sammanfattningsvis så har denna avhandling visat att även om modeller ska vara så enkla som möjligt så behöver avvägningar göras och komplexitet bibehållas, både den temporala och rumsliga dimensionen. Båda modellerna för att elektrifiera länder med låg tillgång till el som presenterats i avhandlingen har olika kompromisser. Den sammankopplade modellen med OnSSET och OSeMOSYS är bra för att få förståelse för den optimala teknologimixen på en övergripande nivå. Om frågan är mer komplex och innehåller fler energiflöden (än bara elektricitet) så ger GEOSeMOSYS mer flexibilitet att modellera det tillsammans med access till el, men på bekostnad av en lägre rumslig nivå. Även om känslighetsanalyserna tillämpats på en kontinent och två olika länder söder om Sahara, så finns andra utmaningar och dynamiker i andra länders och kontinenters elsystem, vilket identifieras som ett viktigt område att fortsätta forskningen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 98
Series
TRITA-ITM-AVL ; 2024:16
Keywords [en]
Energy system optimisation modelling, Global sensitivity analysis, Robust decision methods, Geospatial electrification model, SDG7, SDG13.
Keywords [sv]
Energisystem, optimering, energimodellering, Global känslighetsanalys, Robust decision methods, geospatial elektrifieringsmodell, Globala mål 7, Globala mål 13
National Category
Energy Systems
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-352222ISBN: 978-91-8040-974-2 (print)OAI: oai:DiVA.org:kth-352222DiVA, id: diva2:1892497
Public defence
2024-10-03, Kollegiesalen / https://kth-se.zoom.us/j/62628780198, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2024-08-27 Created: 2024-08-27 Last updated: 2024-10-02Bibliographically approved
List of papers
1. Electrification pathways for Kenya-linking spatial electrification analysis and medium to long term energy planning
Open this publication in new window or tab >>Electrification pathways for Kenya-linking spatial electrification analysis and medium to long term energy planning
2017 (English)In: Environmental Research Letters, E-ISSN 1748-9326, Vol. 12, no 9, article id 095008Article in journal (Refereed) Published
Abstract [en]

In September 2015 UN announced 17 Sustainable Development goals (SDG) from which goal number 7 envisions universal access to modern energy services for all by 2030. In Kenya only about 46% of the population currently has access to electricity. This paper analyses hypothetical scenarios, and selected implications, investigating pathways that would allow the country to reach its electrification targets by 2030. Two modelling tools were used for the purposes of this study, namely OnSSET and OSeMOSYS. The tools were soft-linked in order to capture both the spatial and temporal dynamics of their nature. Two electricity demand scenarios were developed representing low and high end user consumption goals respectively. Indicatively, results show that geothermal, coal, hydro and natural gas would consist the optimal energy mix for the centralized national grid. However, in the case of the low demand scenario a high penetration of stand-alone systems is evident in the country, reaching out to approximately 47% of the electrified population. Increasing end user consumption leads to a shift in the optimal technology mix, with higher penetration of mini-grid technologies and grid extension.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2017
Keywords
Kenya, OSeMOSYS, optimization, OnSSET, off-grid, SDG
National Category
Environmental Sciences
Identifiers
urn:nbn:se:kth:diva-214882 (URN)10.1088/1748-9326/aa7e18 (DOI)000410459000003 ()2-s2.0-85030751684 (Scopus ID)
Note

QC 20171023

Available from: 2017-10-23 Created: 2017-10-23 Last updated: 2024-08-27Bibliographically approved
2. Increasing spatial and temporal resolution in energy system optimisation model – The case of Kenya
Open this publication in new window or tab >>Increasing spatial and temporal resolution in energy system optimisation model – The case of Kenya
2024 (English)In: Energy Strategy Reviews, ISSN 2211-467X, E-ISSN 2211-4688, Vol. 51, article id 101263Article, review/survey (Refereed) Published
Abstract [en]

At the time of writing, 759 million people (2019) still lack access to electricity globally. It is important for energy planning to describe plausible pathways to achieve national goals, using tools such as energy systems models to explore scenarios and provide insight. Until recently, modelling energy access in countries with a low electrification rate was conducted at low spatial (e.g., national) and/or temporal resolutions (e.g., annual time slices or ‘overnight’ electrification). In this paper, we develop methods in an open-source computational workflow with high spatial resolution in an open-source energy systems optimisation model. We use Kenya as our case application where approx. 16 million people still lack access to electricity (2019). One reference scenario and two diagnostic hypothetical scenarios are developed to assess the model. The spatial resolution of approximately 40 by 40 km cells leads to 591 demand cells split between electrified and un-electrified population. The results show that in the reference scenario, the optimal supply option for the unelectrified population is PV panels and batteries. At the same, an oversupply of the planned power plants is observed. The model can capture dynamics between spatially explicit supply options and central power plants in one model.

Place, publisher, year, edition, pages
Elsevier BV, 2024
National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-342168 (URN)10.1016/j.esr.2023.101263 (DOI)2-s2.0-85181167230 (Scopus ID)
Note

QC 20240115

Available from: 2024-01-15 Created: 2024-01-15 Last updated: 2024-08-27Bibliographically approved
3. Quantifying the relative importance of the spatial and temporal resolution in energy systems optimisation model
Open this publication in new window or tab >>Quantifying the relative importance of the spatial and temporal resolution in energy systems optimisation model
(English)Manuscript (preprint) (Other academic)
Abstract [en]

An increasing number of studies using energy system optimisation models are conducted with higher spatial and temporal resolution. This comes with a computational cost which places a limit on the size, complexity, and detail of the model. In this paper, we explore the relative importance of structural aspects of energy system models, spatial and temporal resolution, compared to uncertainties in input parameters such as final energy demand, discount rate and capital costs. We use global sensitivity analysis to uncover these interactions for two developing countries, Kenya, and Benin, which still lack universal access to electricity. We find that temporal resolution has a high influence on all assessed results parameters, and spatial resolution has a significant influence on the expansion of distribution lines to the unelectrified population. The larger overall influence of temporal resolution indicates that this should be prioritised compared to spatial resolution.

National Category
Energy Systems
Identifiers
urn:nbn:se:kth:diva-338668 (URN)10.48550/arXiv.2310.10518 (DOI)
Note

QC 20231102

Available from: 2023-10-23 Created: 2023-10-23 Last updated: 2024-08-27Bibliographically approved
4. Determinants of energy futures—a scenario discovery method applied to cost and carbon emission futures for South American electricity infrastructure
Open this publication in new window or tab >>Determinants of energy futures—a scenario discovery method applied to cost and carbon emission futures for South American electricity infrastructure
Show others...
2019 (English)In: Environmental Research Communications (ERC), E-ISSN 2515-7620, Vol. 02, no 5001Article in journal (Refereed) Published
Abstract [en]

Energy policy and investment are commonly informed by a small number of scenarios, modelled with proprietary models and closed data-sets. It limits what levels of insight that can be derived from it. This paper overcomes these critical concerns by exploring a large number of scenarios with an open-data and open-source model to address regional mitigation policy. Focusing on South America, we translate an ensemble of long-term electricity supply scenarios into policy insights and use post-processing methods to present a systematic mapping of solution outputs to model inputs. We find demand levels, the cost of capital and the level of CO2-limits to be significant determinants of total investment cost. Low-carbon pathways are associated with low demand and low cost of capital. When cost of capital increases a shift away from wind and hydropower to natural gas and solar PV is seen. We further show that appropriate concessionary finance together with energy efficiency measures are critical—at a continental level—to unlock economic, low-carbon investment.

Place, publisher, year, edition, pages
IOP Publishing, 2019
National Category
Energy Engineering
Research subject
Planning and Decision Analysis, Strategies for sustainable development; Planning and Decision Analysis, Urban and Regional Studies
Identifiers
urn:nbn:se:kth:diva-271609 (URN)10.1088/2515-7620/ab06de (DOI)000561426000001 ()2-s2.0-85083441250 (Scopus ID)
Note

QC 20220405

Available from: 2020-03-31 Created: 2020-03-31 Last updated: 2024-08-27Bibliographically approved

Open Access in DiVA

Summary(2706 kB)138 downloads
File information
File name FULLTEXT01.pdfFile size 2706 kBChecksum SHA-512
6365322614f391fad0bd4c4d3661b6b0a74af6c25be3cbb251285396d7d6fc91a70063f16aec2a05f7c1e9a2b78d043b0b7d67510425e67c3f4977f9bdb87710
Type summaryMimetype application/pdf
Errata(36 kB)65 downloads
File information
File name FULLTEXT02.pdfFile size 36 kBChecksum SHA-512
a52c895fc5f11db4c2a448484cc6a92ddc0475f9452658eb5bf88db124bd078c56a2729869de638008619981d8a6e3bbf214f004002a2b6d5fc4b9a95160598e
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Moksnes, Nandi
By organisation
Energy Systems
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 203 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1105 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf