kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploring speech recognition technology for automating public doors
KTH, School of Electrical Engineering and Computer Science (EECS).
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Utforskning av taligenkänningsteknik för automatisering av offentliga dörrar (Swedish)
Abstract [en]

The master thesis explores the accessibility gaps of modern automatic doors. The study involves qualitative user research aimed at learning more about the drawbacks of common entrance solutions. Once the shortcomings were identified through the use of thematic analysis, an exploration for speech recognition technology using the research through design method was performed, supported by an evaluation via user testing with the Wizard of Oz modality. The results indicate best practices for designing a speech-driven system with accessibility in mind, the minimum requirements and the limitations. The research empowers individual autonomy, being a driving force for a more inclusive society, and contributes to the design literature for accessible entrances.

Abstract [sv]

Examensarbetet undersöker tillgänglighetsluckorna i moderna automatiska dörrar. Studien omfattar en kvalitativ användarundersökning som syftar till att lära sig mer om nackdelarna med vanliga entrlösningar. När bristerna hade identifierats med hjälp av tematisk analys genomfördes en undersökning av taligenkänningstekniken med hjälp av metoden forskning genom design, med stöd av en utvärdering via användartestning med modaliteten Wizard of Oz. Resultaten visar på bästa praxis för att utforma ett talstyrt system med tillgänglighet i åtanke, minimikraven och begränsningarna. Forskningen stärker individens autonomi, vilket är en drivkraft för ett mer inkluderande samhälle, och bidrar till designlitteraturen för tillgängliga entrer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 2024. , p. 23
Series
TRITA-EECS-EX ; 2024:508
Keywords [en]
speech recognition, automatic doors, accessibility, user experience, user-centred design
Keywords [sv]
taligenkänning, automatiska dörrar, tillgänglighet, användarupplevelse, användarcentrerad design
National Category
Computer Sciences Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-352466OAI: oai:DiVA.org:kth-352466DiVA, id: diva2:1894302
Supervisors
Examiners
Available from: 2024-10-28 Created: 2024-09-02 Last updated: 2025-02-18Bibliographically approved

Open Access in DiVA

fulltext(1093 kB)92 downloads
File information
File name FULLTEXT02.pdfFile size 1093 kBChecksum SHA-512
8bf28de1a7b22d0bddebacd657b1835095176790c296efb06a29d2c042101c3440f60788dd715005e9f2257ef928cb30507139f6769977ac65ab20d78c203935
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
De Luca, Elisabetta
By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer SciencesComputer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 92 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 330 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf