kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Macroeconomic variables influence on housing prices
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Probability, Mathematical Physics and Statistics.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Probability, Mathematical Physics and Statistics.
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Makroekonomiska variablers påverkan på bostadspriser (Swedish)
Abstract [en]

This study investigates the influence of five macroeconomic variables on housing prices in Sweden, specifically focusing on communally-owned apartments. Using multiple linear regression analysis with a dataset covering the period 1996–2023, the research identifies inflation rate and GDP per capita growth rate as significant determinants of housing prices. The analysis reveals an inverse relationship between inflation and housing prices while GDP per capita growth rate demonstrates a positive correlation. This indicates that high inflation leads to reduced demand for housing, resulting in lower prices while positive growth in GDP per capita leads to higher prices. These findings provide valuable insights for stakeholders including policymakers, private buyers and sellers, investors, and future researchers. While the study achieves a explanatory power of around 50%, it acknowledges the limitations of predictive modeling in complex economic systems like the housing market. Further research is suggested to explore additional variables and methodologies to enhance the accuracy of forecasting housing prices, thus contributing to a deeper understanding of housing market dynamics in Sweden.

Abstract [sv]

Denna studie undersöker påverkan av fem makroekonomiska variabler på bostadspriser i Sverige, med särskilt fokus på bostadsrätter. Genom att använda multipel linjär regressionsanalys på en datamängd som täcker perioden 1996-2023 identifieras inflation och tillväxt i BNP per capita som signifikanta faktorer för bostadspriserna. Resultatet visar en omvänd relation mellan inflation och bostadspriser, medan tillväxt i BNP per capita uppvisar en positiv korrelation. Detta indikerar att en hög inflation leder till minskad efterfrågan på bostadspriser, vilket resulterar i lägre priser, medan en positiv tillväxt i BNP per capita leder till högre priser på bostäder. Dessa resultat ger värdefulla insikter för olika intressenter, inklusive beslutsfattare, privata köpare och säljare, investerare och framtida forskare. Trots att studien lyckas uppnå en förklaringsgrad på cirka 50 %, bekräftar den begränsningarna med prediktiv modellering i komplexa ekonomiska system såsom bostadsmarknaden. Vidare forskning föreslås att utforska ytterligare variabler och metoder för att förbättra noggrannheten i prognoserna för bostadspriser, vilket bidrar till en djupare förståelse för dynamiken på den svenska bostadsmarknaden.

Place, publisher, year, edition, pages
2024.
Series
TRITA-SCI-GRU ; 2024:083
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:kth:diva-349662OAI: oai:DiVA.org:kth-349662DiVA, id: diva2:1894640
Subject / course
Applied Mathematics and Industrial Economics
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2024-09-03 Created: 2024-09-03

Open Access in DiVA

fulltext(1003 kB)288 downloads
File information
File name FULLTEXT01.pdfFile size 1003 kBChecksum SHA-512
44bcc75adde9d15d766e57c7ca1b5f7b15b3c7c191a509245615ac33db1bba976c76656d276aaedef6a7cdf21f7dc1d467d534bb16df2a2f40fd04ea80604462
Type fulltextMimetype application/pdf

By organisation
Probability, Mathematical Physics and Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 288 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 386 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf