kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling Queuing Network at Gröna Lund
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Probability, Mathematical Physics and Statistics.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Probability, Mathematical Physics and Statistics.
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Modellering av könätverk på Gröna Lund (Swedish)
Abstract [en]

The visitor experience at an amusement park is crucial for the park’s success. Understanding how guests move through the park is essential when striving to improve design, reduce queue times, and enhance the overall guest experience. This paper applies mathematical modeling to analyze queues at Gröna Lund, a popular amusement park located in central Stockholm. The model, based on principles from queuing theory combined with machine learning, is designed to estimate transition probabilities between attractions. Additionally, the article explores the potential impact of maximizing the use of the park’s attraction capacity to effectively reduce queue formation. Finally, the results are discussed, and recommendations for Gröna Lund are presented.

Abstract [sv]

Besökarnas upplevelse på en nöjespark är avgörande för dess framgång. Förståelse för hur gäster rör sig genom parken är centralt när man strävar efter att förbättra designen, minska kötider och höja gästupplevelsen. I denna artikel tillämpas matematisk modellering för att analysera köerna på Gröna Lund, en populär nöjespark i centrala Stockholm. Modellen, som bygger på principer från köteori kombinerat med maskininlärning, används för att estimera övergångssannolikheter mellan attraktionerna. Vidare undersöks även den potentiella effekten av att maximera användningen av parkens attraktionskapacitet för att minska köbildningen. Slutligen diskuteras resultaten och rekommendationer till Gröna Lund presenteras.

Place, publisher, year, edition, pages
2024.
Series
TRITA-SCI-GRU ; 2024:107
Keywords [en]
Queuing Theory, Machine Learning, Routing Matrices, Capacity utilization, Amusement parks
Keywords [sv]
Köteori, Maskininlärning, Övergångsmatriser, Kapacitetsutnyttjande, Nöjesparker
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:kth:diva-352563OAI: oai:DiVA.org:kth-352563DiVA, id: diva2:1894686
External cooperation
Gröna Lund
Subject / course
Applied Mathematics and Industrial Economics
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2024-09-03 Created: 2024-09-03 Last updated: 2024-11-25

Open Access in DiVA

fulltext(4373 kB)193 downloads
File information
File name FULLTEXT01.pdfFile size 4373 kBChecksum SHA-512
700ffb81b953ceb32c7b575c8369362a5b3ad680431816cf416381897af851b72b8ac2c51dd864b92c4644a42666015b57274d1768614ad98321d00e1e74af91
Type fulltextMimetype application/pdf

By organisation
Probability, Mathematical Physics and Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 193 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 273 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf