kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Amplification and Fragmentation Free Long-read Sequencing Enables Rapid Analysis of Packaged Adeno-associated Virus ssDNA
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0000-0001-7679-2145
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, Optimization and Systems Theory.ORCID iD: 0000-0002-3316-770X
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Structural Biotechnology.ORCID iD: 0000-0003-3862-3433
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Bioinformatics and Computational Biology Biochemistry Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-352597OAI: oai:DiVA.org:kth-352597DiVA, id: diva2:1894847
Note

QC 20240906

Available from: 2024-09-04 Created: 2024-09-04 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Methods for engineering and characterization of advanced therapeutics
Open this publication in new window or tab >>Methods for engineering and characterization of advanced therapeutics
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Protein therapeutics are used worldwide to treat a multitude of diseases. Most therapeutic proteins on the market today are antibodies, and one of the characteristics that has made antibodies so useful for therapeutic use is their propensity to specifically and selectively bind other proteins with high affinity. While antibodies themselves can be very effective for treatment of different diseases, the field has also started to progress towards more advanced formats and entities. Monoclonal antibodies are generally monospecific. In many cases, however, binding to two or more therapeutically relevant proteins simultaneously can be beneficial. To overcome this limitation, different bispecific antibody formats have been engineered. The AffiMab, for example, is a bispecific antibody format, where a monoclonal antibody is fused to a much smaller affinity protein called an affibody molecule, allowing two independent affinity proteins to be combined in a modular fashion. To achieve this, the individual affinity proteins first needs to be developed, and this can be achieved using protein engineering methods, such as phage display. While phage display enables selection of affinity proteins binding new target proteins, simply binding may not be enough, and methods for discovering more diverse affinity proteins and characterizing their binding are therefore essential.

Bispecific antibodies constitute only one example where advanced therapeutic entities have emerged. Another example of advanced therapeutics are gene therapies, where adeno-associated viruses (AAV) have transpired as one of the most successful platforms. AAV-based gene therapy has, in several recent approvals, proved its ability to be used to cure inherited genetic disorders, such as spinal muscle atrophy and haemophilia, with a single treatment. The lack of precise targeting of AAV vectors, however, has prompted researchers to develop engineered AAVs with improved targeting. While these engineered variants are yet to reach the clinic, they hold promise of gene therapies with less side-effects and higher effective doses in the desired tissues. Compared to protein therapeutics, AAVs add new dimensions to characterization of quality of the produced therapeutic. As AAVs are a combination of proteins and DNA, both these components need to be verified, and as such, methods used for characterization of proteins only cover a part of it. Analysis and characterization of the DNA inside the AAV capsids is crucial, both for drug discovery, to ensure the correct gene is being delivered, and for understanding the observed effects of treatment. Standardized methods for sequencing and analysis of recombinant AAV genomes are yet to be established but this, combined with novel AAV variants, could help leverage a new generation of AAV-based therapies. 

All of these topics are explored in this thesis. In Study I, AffiMabs were developed for treatment of HER2 resistant gastric carcinoma, with improved cytotoxic effect observed in vitro compared to the parental proteins trastuzumab and ZEGFR. In Study II, a method for rapid, residue level, eptiope mapping was developed, and the eptiopes of three new antibodies targeting the SARS-CoV-2 spike protein were determined. In Study III, phage display was combined with deep sequencing to enable discovery of affibody molecules with different binding kinetics and epitopes. In Study IV, affibody molecules were fused to AAV capsids to achieve receptor specific targeting. The capsids were shown to be both functional, superior to the parental serotype for receptor-specific transduction, and modular, as different affibody molecules could be incorporated. Finally, in Study V, a method for deep sequencing and analysis of AAV genomes was established, allowing identification of a wide array of different DNA encapsidated in AAVs.

In summary, the studies presented in this thesis explores a broad selection of new and improved methods for both engineering and characterization of advanced therapeutics. 

Abstract [sv]

Världen över används proteinläkemedel för att behandla en stor mängd olika sjukdomar. De flesta läkemedelsprotein på marknaden idag är antikroppar, och en av anledningarna som har gjort antikroppar så användbara som läkemedel är deras benägenhet att binda specifikt och selektivt till andra protein med hög affinitet. Även om antikroppar i sig kan vara väldigt effektiva för att behandla diverse sjukdomar så har fältet börjat utveckla mer avancerade format och varianter. Monoklonala antikroppar är generellt sett monospecifika. I många fall är det dock fördelaktigt med bindning till två eller flera terapeutiskt relevanta protein samtidigt. För att komma runt det har bispecifika antikroppsformat utvecklats. AffiMabs är ett exempel på ett bispecifikt antikroppsformat, där en monoklonal antikropp sätts samman med ett mycket mindre affinetsprotein som heter affibody. Detta ger möjligheten att fritt och modulärt kombinera två fristående affinitetsprotein. För att uppnå detta måste först de individuella affinitetsproteinen utvecklas och för det kan proteinutvecklingsmetoder, såsom fagdisplay, användas. Även om fagdisplay möjliggör selektion av affinitetsprotein mot nya målprotein så är det inte alltid tillräckligt med bara bindning. Detta gör det nödvändigt att utveckla nya metoder för att hitta och karakterisera mer diversa bindare.

Bispecifika antikroppar utgör bara ett exempel av de avancerade läkemedelstyper som har dykt upp. Ett annat exempel på avancerade läkemedel är genterapi med adeno-associerade virus (AAV) i spetsen som en av de mest framgångsrika plattformarna. Med flera nyligen godkända läkemedel har AAV-baserad genterapi bevisat sin förmåga att användas för att bota ärvda genetiska sjukdomar, såsom spinal muskelatrofi  och hemofili, med en enda behandling. AAVers brist på målriktning har föranlett forskning för att utveckla nya typer av AAV med förbättrad målriktning. Dessa varianter har inte nått vården än men har möjligheten att ge genterapier med mindre bieffekter och högre effektiv dos i den önskade vävnaden. AAVer ställer även nya krav på kvalitetsgranskning av läkemedelsprodukten jämfört med proteinläkemedel. Då AAVer består av både protein och DNA måste både dessa delar verifieras och följaktligen täcker metoder för proteinläkemedel bara ena delen. Analys och karakterisering av det DNA som finns inuti AAV-kapsiderna är viktigt, både för läkemedelsutveckling för att försäkra sig om att rätt gen levereras, och för förståelse av de effekter behandlingen ger. Det finns idag inga standardiserade metoder för sekvensering och analys av genomen i rekombinanta AAVer men det, tillsammans med nya AAV-varianter, har möjligheten att utgöra grunden för en ny generation av AAV-baserade terapier.

Alla dessa områden utforskas i den här avhandlingen. I Studie I utvecklades nya AffiMabs för behandling av HER2-resistant magsäckscancer, där förbättrad cytotoxisk effekt observerades in vitro jämfört med ursprungsproteinerna trastuzumab och ZEGFR. I Studie II utvecklades en metod for snabb epitopmappning på aminosyrenivå och epitoperna för tre nya antikroppar mot SARS-CoV-2 spike-proteinet bestämdes. I Studie III kombinerades fagdisplay med djupsekvensering för att möjliggöra upptäckt av affibodymolekyler med olika bindningskinetik och epitoper. I Studie IV sattes affibodymolekyler på AAV-kapsider för att uppnå receptor-specifik målriktning. Dessa kapsider visade sig både funktionella, ha bättre receptor-målriktning än ursprungs serotypen, och vara modulära, då flera olika affibodymolekyler kunde användas. Slutligen, i Studie V, utvecklades en metod för djupsekvensering och analys av DNA packat i AAV-kapsider vilket möjliggjorde identifiering av ett brett spann av olika DNA-typer som packats i AAVer.

Sammanfattningsvis utforskar studierena i den här avhandlingen ett brett urval av nya och förbättrade metoder för både utveckling och karakterisering av avancerade läkemedel.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 99
Series
TRITA-CBH-FOU ; 2024:35
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-352670 (URN)978-91-8106-032-4 (ISBN)
Public defence
2024-09-27, F3, Lindstedtsvägen 26, via Zoom: https://kth-se.zoom.us/webinar/register/WN_r88GglqEQ_u9rC4LPxwFAQ, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2024-09-05

Available from: 2024-09-05 Created: 2024-09-05 Last updated: 2024-09-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Karlander, MaximilianKarlsson, AliceRyner, MartinJung, TaeyangWistbacka, NumMalm, MagdalenaRockberg, Johan

Search in DiVA

By author/editor
Karlander, MaximilianKarlsson, AliceRyner, MartinJung, TaeyangWistbacka, NumMalm, MagdalenaRockberg, Johan
By organisation
Protein TechnologyNumerical Analysis, Optimization and Systems TheoryStructural Biotechnology
Bioinformatics and Computational BiologyBiochemistryMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 186 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf