Aktiv brusreducering (ANC) är beroende av att man exakt kan matcha en störnings amplitud och fas för att kunna sända ut ljudets exakta invers [2]. Användning av flera utåtriktade referensmikrofoner har visat sig förbättra prestandan hos feedforward-ANC genom att öka tillgången till tidigarelagd information om störningar [3], i jämförelse med enkelmikrofonslösningar. Studien utgår från frågeställningarna: “vilken inverkan har mikrofoners riktningsberoende karaktär på ett ANC system?” samt “påverkar mikrofoners riktningsberoende karakteristiker dess optimala placering med syftet att minimera fasvariation beroende av ljudvågors infallsvinkel?”. Tre simulationsmodeller av mikrofonsystem presenteras, en riktningslös mikrofonmodell, en förenklad riktningsberoende mikrofonmodell, samt en en frekvens- och riktningsberoende mikrofonmodell. Modellerna användes för att betrakta vilken inverkan mikrofoners riktningsberoende upptagningsförmåga har inom ramarna av ett feedforwads-ANC system. Riktningsberoende upptagningsförmåga beaktades också i förhållande till optimal mikrofonplacering [5]. Mikrofonplaceringar hittades för varje mikrofonmodell som minimerade fasavvikelsen för ljud som närmar sig systemet från olika infallsvinklar [7].
Studiens resultat indikerar att mikrofonernas riktningsberoende egenskaper troligtvis har en betydande inverkan på ett MRFANC-systems prestanda. Flerreferenslösningar visas ha betydande fördelar när det gäller att minimera systemets riktningsberoende egenskaper, jämfört med enkelmikrofonslösningar. Mikrofonernas riktningsberoende egenskaper visas vara avgörande för beräknade optimala mikrofonplaceringar.
Active noise cancelling (ANC) depends on accurately matching the gain and phase of an incoming sound to effectively cancel it out by emitting an accurate inversion of that sound [2]. Using multiple feedforward reference microphones has been shown to improve ANC performance by allowing access to more time-advanced information [3], compared to single microphone solutions. Three mathematical models of varying complexity are presented, a non-directional microphone model, a simplified directional microphone model, and a frequency dependent directional microphone model. The models are used to simulate the directional behaviour of a multiple reference feedforward ANC (MRFANC) system. Three levels of directionality are compared in order to answer how individual microphones’ directional characteristics impact said system. The results are analysed in terms of phase deviation between sounds incoming at various angles, and validated through a comparison to a physical prototype. Microphone directivity was also considered in relation to optimal microphone placement [5]. Configurations were found for each model that minimised phase deviation for sounds approaching at different angles [7].
The results indicate that microphones’ directional characteristics have a significant impact on the response of a MRFANC system. A multiple reference ANC solution is shown to have benefits in terms of minimising directional dependence in gain and phase response, compared to a single reference alternative. Microphone directionality was also shown to have a significant impact on the models’ predicted optimal microphone placement.