kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hybrid polymer-liquid electrolytes and their interactions with electrode materials
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0002-3554-7781
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0003-3201-5138
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
Division of Materials and Manufacture, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.ORCID iD: 0000-0002-3468-4450
(English)Manuscript (preprint) (Other academic)
Abstract [en]

To address the increasing demand for efficient, safe, and sustainable energy storage solutions in the transition towards renewable energy and electrified society, this study explores hybrid polymer-liquid electrolytes (HEs) as a novel solution to overcome challenges in traditional liquid electrolytes used in lithium-ion batteries (LIBs). Particularly, the research is focused on polymerization-induced phase separation (PIPS) synthesized HEs with distinct phase-separated systems, where an ion-conducting liquid phase percolates the macropores and mesopores within the formed thermoset solid phase. This study investigates the feasibility of using HEs with commercial cathodes and highlights their respective merits and challenges. The feasibility of infusing cathode (i.e. the positive electrode) with HEs synthetized via PIPS within both micron-sized and nano-sized confined spaces is proved. By incorporating these HE-infused electrodes into half-cell configurations, the study proves that the HEs are compatible with high voltage electrodes, and they exhibit energy density comparable with traditional systems. A significant focus is placed on assessing the morphological and electrochemical stability of HEs after cycling.

National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-353836OAI: oai:DiVA.org:kth-353836DiVA, id: diva2:1900669
Note

QC 20240930

Available from: 2024-09-24 Created: 2024-09-24 Last updated: 2024-09-30Bibliographically approved
In thesis
1. Hybrid polymer-liquid electrolytes for lithium ion battery applications
Open this publication in new window or tab >>Hybrid polymer-liquid electrolytes for lithium ion battery applications
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The global shift towards renewable energy sources and the electrification of transportation necessitates advanced energy storage solutions, with lithium-ion batteries (LIBs) at the forefront. However, conventional batteries with liquid electrolytes in LIBs pose several limitations such as flammability, poor chemical stability, leakage risks, overall safety concerns, and limited processability. This thesis investigates hybrid polymer-liquid electrolytes (HEs) as an alternative to address these issues in LIBs as well as a way to obtain additional functionalities e.g. improved structural integrity.

The research is organized into four main studies. Paper I focuses on the three-dimensional (3D) reconstruction and analysis of HE structures. Using focused ion beam-scanning electron microscopy (FIB-SEM), the study reveals the complex, interconnected pore networks within HEs that are critical for ionic conductivity and mechanical stability.

Paper II explores the impact of porosity on the ionic and molecular mobility within HEs. By varying the liquid electrolyte content, the study demonstrates how increased porosity enhances ion mobility, directly correlating with improved electrochemical performance. Nuclear magnetic resonance (NMR) diffusion experiments further elucidate the transport mechanisms within the polymer matrix, showing a significant increase in ion diffusion rates with higher electrolyte content.

Paper III examines the role of nanosized carbon black (CB) particles in the polymerization-induced phase separation (PIPS) process used to synthesize HEs. The addition of CB improves the conductivity of HEs without compromising their morphological integrity. The study finds that even small amounts of CB can substantially enhance the overall conductivity, making CB-rich HEs potential candidates for multifunctional roles within battery electrodes, such as conductive binders.

Paper IV evaluates the practical application of HEs by integrating them into commercial LIB electrodes. The HE-infused electrodes maintain their structural and electrochemical properties even after multiple charge-discharge cycles, proving their potential for use in commercial applications.

This thesis contributes to the development of multifunctional electrolytes that not only address the safety issues associated with liquid electrolytes but also advance multifunctionality in LIBs. The methodologies and findings presented provide a foundation for future research in high-performance, safer, and more sustainable battery technologies.

Abstract [sv]

Den globala förändringen mot förnybara energikällor och elektrifieringen av transporter kräver avancerade energilagringslösningar, med litiumjonbatterier (LIB) i framkant. Konventionella batterier med flytande elektrolyter i LIB har dock flera begränsningar såsom brandfarlighet, kemisk instabilitet, risk för läckage, begränsade bearbetbarhet och säkerhetproblem. Denna avhandling undersöker ”hybrid polymer-liquid electrolytes” (HEs) som ett alternativ för att ta itu med dessa problem i LIBs samt ett sätt att erhålla ytterligare funktionaliteter t.ex. förbättrad strukturell integritet.

Forskningen är organiserad i fyra huvudstudier. Artikel I fokuserar på tredimensionell (3D) rekonstruktion och analys av HE-strukturer. Med hjälp av ”focused ion beam-scanning electron microscopy” (FIB-SEM) visar studien de komplexa, sammankopplade pornätverken inom HEs som är avgörande för jonkonduktivitet och mekanisk stabilitet.

Artikel II utforskar inverkan av porositet på jonisk och molekylär rörlighet inom HEs. Genom att variera innehållet av flytande elektrolyt visar studien hur ökad porositet förbättrar jonmobiliteten, vilket direkt korrelerar med förbättrad elektrokemisk prestanda. ”Nuclear magnetic resonance” (NMR) diffusionsexperiment belyser transportmekanismerna inom polymermatrisen ytterligare och visar en signifikant ökning av jondiffusionshastigheter med högre elektrolythalt.

Artikel III undersöker rollen av kimrökspartiklar (CB) i nanostorlek i den polymerisationsinducerade fasseparationsprocessen (PIPS) som används för att syntetisera HE. Tillsatsen av CB förbättrar konduktiviteten hos HE utan att kompromissa med deras morfologiska integritet. Studien visar att även små mängder CB avsevärt kan förbättra den totala konduktiviteten, vilket gör CB-rika HEs potentiella kandidater för multifunktionella roller inom batterielektroder, såsom ledande bindemedel.

Artikel IV utvärderar den praktiska tillämpningen av HE:er genom att integrera dem i kommersiella LIB-elektroder. De HE-innehållande elektroderna bibehåller sina strukturella och elektrokemiska egenskaper även efter flera laddnings-urladdningscykler, vilket bevisar deras potential för användning i kommersiella tillämpningar.

Denna avhandling bidrar till utvecklingen av multifunktionella elektrolyter som inte bara tar upp säkerhetsfrågorna förknippade med flytande elektrolyter utan också främjar multifunktionaliteten i LIB. Metoderna och resultaten som presenteras ger en grund för framtida forskning inom högpresterande, säkrare och mer hållbar batteriteknologi.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 67
Series
TRITA-CBH-FOU ; 2024:44
Keywords
Hybrid Polymer-Liquid Electrolytes, Lithium-Ion Batteries, Energy Storage, Hybrid polymer-vätske elektrolyter, Litiumjonbatterier, Energilagring
National Category
Chemical Engineering Materials Engineering Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-353838 (URN)978-91-8106-068-3 (ISBN)
Public defence
2024-10-25, E3, Osquars backe 18, https://kth-se.zoom.us/j/66715840761, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 48488
Note

QC 20240930

Available from: 2024-09-30 Created: 2024-09-26 Last updated: 2024-10-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Cattaruzza, MartinaJohansson, MatsLindbergh, Göran

Search in DiVA

By author/editor
Cattaruzza, MartinaJohansson, MatsLindbergh, GöranLiu, Fang
By organisation
Coating TechnologyApplied Electrochemistry
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf