Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The global shift towards renewable energy sources and the electrification of transportation necessitates advanced energy storage solutions, with lithium-ion batteries (LIBs) at the forefront. However, conventional batteries with liquid electrolytes in LIBs pose several limitations such as flammability, poor chemical stability, leakage risks, overall safety concerns, and limited processability. This thesis investigates hybrid polymer-liquid electrolytes (HEs) as an alternative to address these issues in LIBs as well as a way to obtain additional functionalities e.g. improved structural integrity.
The research is organized into four main studies. Paper I focuses on the three-dimensional (3D) reconstruction and analysis of HE structures. Using focused ion beam-scanning electron microscopy (FIB-SEM), the study reveals the complex, interconnected pore networks within HEs that are critical for ionic conductivity and mechanical stability.
Paper II explores the impact of porosity on the ionic and molecular mobility within HEs. By varying the liquid electrolyte content, the study demonstrates how increased porosity enhances ion mobility, directly correlating with improved electrochemical performance. Nuclear magnetic resonance (NMR) diffusion experiments further elucidate the transport mechanisms within the polymer matrix, showing a significant increase in ion diffusion rates with higher electrolyte content.
Paper III examines the role of nanosized carbon black (CB) particles in the polymerization-induced phase separation (PIPS) process used to synthesize HEs. The addition of CB improves the conductivity of HEs without compromising their morphological integrity. The study finds that even small amounts of CB can substantially enhance the overall conductivity, making CB-rich HEs potential candidates for multifunctional roles within battery electrodes, such as conductive binders.
Paper IV evaluates the practical application of HEs by integrating them into commercial LIB electrodes. The HE-infused electrodes maintain their structural and electrochemical properties even after multiple charge-discharge cycles, proving their potential for use in commercial applications.
This thesis contributes to the development of multifunctional electrolytes that not only address the safety issues associated with liquid electrolytes but also advance multifunctionality in LIBs. The methodologies and findings presented provide a foundation for future research in high-performance, safer, and more sustainable battery technologies.
Abstract [sv]
Den globala förändringen mot förnybara energikällor och elektrifieringen av transporter kräver avancerade energilagringslösningar, med litiumjonbatterier (LIB) i framkant. Konventionella batterier med flytande elektrolyter i LIB har dock flera begränsningar såsom brandfarlighet, kemisk instabilitet, risk för läckage, begränsade bearbetbarhet och säkerhetproblem. Denna avhandling undersöker ”hybrid polymer-liquid electrolytes” (HEs) som ett alternativ för att ta itu med dessa problem i LIBs samt ett sätt att erhålla ytterligare funktionaliteter t.ex. förbättrad strukturell integritet.
Forskningen är organiserad i fyra huvudstudier. Artikel I fokuserar på tredimensionell (3D) rekonstruktion och analys av HE-strukturer. Med hjälp av ”focused ion beam-scanning electron microscopy” (FIB-SEM) visar studien de komplexa, sammankopplade pornätverken inom HEs som är avgörande för jonkonduktivitet och mekanisk stabilitet.
Artikel II utforskar inverkan av porositet på jonisk och molekylär rörlighet inom HEs. Genom att variera innehållet av flytande elektrolyt visar studien hur ökad porositet förbättrar jonmobiliteten, vilket direkt korrelerar med förbättrad elektrokemisk prestanda. ”Nuclear magnetic resonance” (NMR) diffusionsexperiment belyser transportmekanismerna inom polymermatrisen ytterligare och visar en signifikant ökning av jondiffusionshastigheter med högre elektrolythalt.
Artikel III undersöker rollen av kimrökspartiklar (CB) i nanostorlek i den polymerisationsinducerade fasseparationsprocessen (PIPS) som används för att syntetisera HE. Tillsatsen av CB förbättrar konduktiviteten hos HE utan att kompromissa med deras morfologiska integritet. Studien visar att även små mängder CB avsevärt kan förbättra den totala konduktiviteten, vilket gör CB-rika HEs potentiella kandidater för multifunktionella roller inom batterielektroder, såsom ledande bindemedel.
Artikel IV utvärderar den praktiska tillämpningen av HE:er genom att integrera dem i kommersiella LIB-elektroder. De HE-innehållande elektroderna bibehåller sina strukturella och elektrokemiska egenskaper även efter flera laddnings-urladdningscykler, vilket bevisar deras potential för användning i kommersiella tillämpningar.
Denna avhandling bidrar till utvecklingen av multifunktionella elektrolyter som inte bara tar upp säkerhetsfrågorna förknippade med flytande elektrolyter utan också främjar multifunktionaliteten i LIB. Metoderna och resultaten som presenteras ger en grund för framtida forskning inom högpresterande, säkrare och mer hållbar batteriteknologi.
Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 67
Series
TRITA-CBH-FOU ; 2024:44
Keywords
Hybrid Polymer-Liquid Electrolytes, Lithium-Ion Batteries, Energy Storage, Hybrid polymer-vätske elektrolyter, Litiumjonbatterier, Energilagring
National Category
Chemical Engineering Materials Engineering Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-353838 (URN)978-91-8106-068-3 (ISBN)
Public defence
2024-10-25, E3, Osquars backe 18, https://kth-se.zoom.us/j/66715840761, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 48488
Note
QC 20240930
2024-09-302024-09-262024-10-23Bibliographically approved