kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Human Pathology Atlas for deciphering the prognostic features of human cancers
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.ORCID iD: 0000-0002-9248-3294
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.ORCID iD: 0000-0002-3721-8586
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.ORCID iD: 0000-0002-0257-7554
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.ORCID iD: 0000-0002-0064-4776
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Cancer is one of the leading causes of mortality worldwide, highlighting the urgent need for a deeper molecular understanding of the disease's heterogeneity and the development of personalized treatments. Since its establishment in 2017, the Human Pathology Atlas has been instrumental in linking gene expression profiling with patient survival outcomes, providing system-level insights and experimental validation across a wide range of cancer research. In this updated analysis, we analysed the expression profiles of 6,918 patients across 21 cancer types using the latest gene annotations. Our refined approach enabled us to offer an updated list of prognostic genes for human cancers, with a focus on hepatocellular, renal and colorectal cancers. To strengthen the reliability of our findings, we integrated data from 10 independent cancer cohorts, creating a cross-validated, reliable collection of prognostic genes. By applying a systems biology approach, we identified that patient survival outcomes in kidney renal clear cell carcinoma (KIRC) and liver hepatocellular carcinoma (LIHC) are strongly associated with gene expression profiles. We also developed a prognostic regulatory network specifically for KIRC and LIHC to enhance the utility of the Human Pathology Atlas for cancer research. The updated version of the Human Pathology Atlas lays the foundation for precision oncology and the development of personalized treatment strategies.

National Category
Cancer and Oncology Bioinformatics and Computational Biology
Identifiers
URN: urn:nbn:se:kth:diva-354133DOI: 10.21203/rs.3.rs-4544479/v1OAI: oai:DiVA.org:kth-354133DiVA, id: diva2:1901772
Note

QC 20240930

Available from: 2024-09-30 Created: 2024-09-30 Last updated: 2025-02-05Bibliographically approved
In thesis
1. Unraveling the Molecular Mechanisms of Complex Diseases Using Systems Biology Approach
Open this publication in new window or tab >>Unraveling the Molecular Mechanisms of Complex Diseases Using Systems Biology Approach
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the context of rising global health challenges, the mechanistic investigation and

treatment of complex diseases, including cancer, liver diseases, has emerged as a

vital focus in scientific research. A thorough understanding of basic biological

processes is crucial for the development of tools that aid in diagnosing, monitoring,

and treating human diseases. This doctoral thesis investigates the molecular

mechanisms underlying complex human diseases, with an emphasis on discovering

novel therapeutic targets and compounds though systems biology approaches. By

leveraging large-scale transcriptomic data, this work aims to uncover novel insights

into disease biology that can drive drug repositioning and precision medicine. The

thesis integrates various computational strategies and biological frameworks to

connect gene expression patterns with disease progression and therapeutic

opportunities, focusing primarily on cancer and metabolic disorders.

The studies compiled in this thesis contribute to the understanding of human disease

biology through the systematic analysis of gene expression profiles and the

application of network-based methodologies. Paper I introduces the Human

Pathology Atlas, providing an in-depth analysis of gene expression prognostic

features across different cancer types, which improves our understanding of

relationships between gene expression and disease outcomes. Paper II and Paper

III employ gene co-expression network analysis combined with drug repositioning

strategies, identifying promising therapeutic candidates for hepatocellular

carcinoma and pancreatic ductal adenocarcinoma, respectively. These studies

illustrate how network-based approaches can locate key molecular targets and

potential repurposable drugs for various cancer types.

In Paper IV, we apply a network-based approach to investigate the dysregulated

transcriptional regulation in non-alcoholic fatty liver disease (NAFLD). This study

identifies critical genes and pathways involved in the disease progression, providing

new insights into the pathophysiology of NAFLD. Lastly, Paper V presents

comprehensive review on the emerging role of PKLR in liver diseases, highlighting

its connection to metabolic diseases. This review discusses PKLR’s potential as a

therapeutic target, providing a foundation for future studies in metabolic disease

research.

In summary, this thesis contributes to the field of systems biology by integrating

gene expression and network methodologies, offering innovative strategies for

therapeutic development and personalized medicine across complex diseases.

Abstract [sv]

I samband med ökande globala hälsoutmaningar har den mekanistiska

undersökningen och behandlingen av komplexa sjukdomar, inklusive cancer och

leversjukdomar, blivit ett viktigt fokus inom vetenskaplig forskning. En djupgående

förståelse av grundläggande biologiska processer är avgörande för utvecklingen av

verktyg som hjälper till att diagnostisera, övervaka och behandla mänskliga

sjukdomar. Denna doktorsavhandling undersöker de molekylära mekanismerna

bakom komplexa mänskliga sjukdomar, med betoning på att upptäcka nya

terapeutiska mål och substanser genom systembiologiska tillvägagångssätt. Genom

att utnyttja storskaliga transkriptomiska data syftar detta arbete till att avslöja nya

insikter i sjukdomsbiologin som kan driva läkemedelsompositionering och

precisionsmedicin. Avhandlingen integrerar olika beräkningsstrategier och

biologiska ramverk för att koppla genuttrycksmönster till sjukdomsutveckling och

terapeutiska möjligheter, med fokus främst på cancer och metabola sjukdomar.

Studierna som samlats i denna avhandling bidrar avsevärt till förståelsen av

mänsklig sjukdomsbiologi genom systematisk analys av genuttrycksprofiler och

tillämpning av nätverksbaserade metoder. Paper I introducerar Human Pathology

Atlas och ger en djupgående analys av prognostiska genuttrycksdrag i olika

cancertyper, vilket förbättrar vår förståelse av sambanden mellan genuttryck och

sjukdomsutfall. Paper II och Paper III använder genko-

expressionsnätverksanalys kombinerat med läkemedelsompositionering för att

identifiera lovande terapeutiska kandidater för hepatocellulärt karcinom och

pankreatiskt duktalt adenokarcinom. Dessa studier visar hur nätverksbaserade

metoder kan lokalisera viktiga molekylära mål och potentiella återanvändbara

läkemedel för olika cancerformer.

I Paper IV tillämpas ett nätverksbaserat tillvägagångssätt för att undersöka den

dysreglerade transkriptionella regleringen vid icke-alkoholisk fettlever (NAFLD).

Denna studie identifierar kritiska gener och vägar som är involverade i sjukdomens

utveckling och ger nya insikter i NAFLD patofysiologi. Slutligen presenterar Paper

V en omfattande översikt över den framväxande rollen för PKLR i leversjukdomar

och betonar dess koppling till metabola sjukdomar. Denna översikt diskuterar PKLR

potential som ett terapeutiskt mål och ger en grund för framtida studier inom

metabol sjukdomsforskning.

Sammanfattningsvis bidrar denna avhandling till området systembiologi genom att

integrera genuttryck och nätverksmetoder och erbjuda innovativa strategier för

terapeutisk utveckling och personanpassad medicin inom komplexa sjukdomar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 43
Series
TRITA-CBH-FOU ; 2024:41
National Category
Biological Sciences Bioinformatics and Computational Biology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-354147 (URN)978-91-8106-063-8 (ISBN)
Public defence
2024-10-30, Kollegiesalen, Brinellvägen 6, via Zoom: https://kth-se.zoom.us/j/69004831025, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2024-10-01

Available from: 2024-10-01 Created: 2024-10-01 Last updated: 2025-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Yuan, MengZhang, Chengvon Feilitzen, KalleZwahlen, MartinShi, MengnanLi, XiangyuYang, HongSong, XiyaUhlén, MathiasMardinoglu, Adil

Search in DiVA

By author/editor
Yuan, MengZhang, Chengvon Feilitzen, KalleZwahlen, MartinShi, MengnanLi, XiangyuYang, HongSong, XiyaUhlén, MathiasMardinoglu, Adil
By organisation
Systems Biology
Cancer and OncologyBioinformatics and Computational Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 45 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf