kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tuneable and efficient manufacturing of Li-ion battery separators using photopolymerization-induced phase separation
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0002-5075-6207
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0003-3201-5138
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In an effort to increase the thermomechanical stability of lithium-ion battery separators, thermoset membranes (TM) are a viable alternative to commercial polyolefin separators. We present an efficient and scalable method to produce thin TMs via photopolymerization-induced phase separation (PIPS) in ambient conditions. The pore size is controllable and tuneable by varying the ratio between propylene carbonate (PC) and tetraethylene glycol (TEG) as porogens. The TMs maintain dimensional stability above 200 C and sufficient mechanical stiffness. By incorporating a small amount of a thiol monomer, the brittleness of the TMs was suppressed, and a high Young’s modulus is achieved (880 MPa). The ionic conductivity of the optimized TMs was around 1 mS cm-2, with a low MacMullin number, NM (4.9). In symmetrical Li/Li cells, the TMs behaved similar to the commercial PE reference, effectively suppressing short circuits for 1000+ hours although continuous overpotential build-up and electrolyte consumption eventually led to cell failure. In LiFePO4/Li half-cells, similar rate capabilities were achieved for the TMs compared to the reference showing its viability as a separator material.   

National Category
Energy Engineering Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-354393OAI: oai:DiVA.org:kth-354393DiVA, id: diva2:1903387
Note

QC 20241004

Available from: 2024-10-04 Created: 2024-10-04 Last updated: 2024-10-04Bibliographically approved
In thesis
1. Ion transport in novel lithium-ion battery electrolytes: Harnessing polymerization-induced phase separation for hybrid systems
Open this publication in new window or tab >>Ion transport in novel lithium-ion battery electrolytes: Harnessing polymerization-induced phase separation for hybrid systems
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Lithium-ion batteries have enabled the rapid adoption of consumer electronics and electromobility. In many next-generation lithium-based batteries, the development of high-performing and safe electrolytes is key. Although liquid electrolytes have high ionic conductivity, they suffer from stability and safety issues. Conversely, solid polymer electrolytes offer a safer and more stable alternative, but exhibit inherently low ionic conductivity. This thesis has focused on developing new hybrid liquid and polymer electrolyte systems. 

The first part focuses on understanding the ion transport in new liquid electrolytes and oligomers. Dicarbonate structures with varying spacer and end group were investigated and compared to traditional linear carbonate electrolytes. The dicarbonate electrolytes exhibit high thermal stabilities but simultaneously a non-ideal ion transport with extensive ion pairing. The effect of molecular weight (Mn) and end group on the ion transport in two polymers with different backbones were also investigated. The investigation elucidated the effect of coordination strength on the partial lithium ion transport. It also showed that when changing the molecular weight (Mn), distinct ion transport mechanism regimes did not exist.

The second part focuses on the development of hybrid polymer-liquid electrolytes (HEs) using polymerization-induced phase separation (PIPS). It was shown that both the monomer and porogen structure has a significant effect on thermomechanical and electrochemical properties of the HEs. Finally, the use of UV-initiated PIPS was investigated as an efficient technique to manufacture porous thermoset membranes as battery separators. A membrane with low ionic resistance and promising battery cycling performance was developed. Overall, this thesis shows that hybrid systems have a role to play in systems where multiple properties need to be fulfilled simultaneously and that PIPS is a promising tool to fabricate such materials. 

Abstract [sv]

Litiumjonbatterier har möjliggjort den breda tillgången av hemelektronik och elektromobilitet. En nyckel till utvecklingen av många nästagenerations litiumbaserade batterier är beroende av högpresterande och säkra elektrolyter. Även om vätskebaserade elektrolyter har hög jonledningsförmåga, lider de av stabilitets- och säkerhetsproblem. Samtidigt erbjuder fasta polymerelektrolyter ett säkrare och mer stabilt alternativ, men uppvisar låg jonledningsförmåga. Denna avhandling har fokuserat på att utveckla nya hybrida vätske- och polymerelektrolytsystem.

Den första delen fokuserar på att förstå jontransporten i nya vätskebaserade elektrolyter och oligomerer. Dikarbonatstrukturer med varierande ”spacer” och ändgrupp undersöktes och jämfördes med traditionella karbonatelektrolyter. Dikarbonatelektrolyterna uppvisar hög termisk stabilitet men samtidigt en icke-ideal jontransport med omfattande jonparning. Effekten av molekylvikt (Mn) och ändgrupp på jontransporten i två polymerer med olika kedjestruktur undersöktes också. Studien klargjorde effekten av koordinationsstyrka på den partiella litiumjontransporten. Det visade också att när man ändrade molekylvikten (Mn), förändrades inte jontransportmekanismer.

Den andra delen fokuserar på utvecklingen av hybrida vätske-polymerelektrolyter (HE) med hjälp av polymerisationsinducerad fasseparation (PIPS). Det visades att både monomer- och porogenstrukturen har en betydelsefull påverkan på termomekaniska och elektrokemiska egenskaper hos HE:erna. Slutligen undersöktes användningen av UV-initierad PIPS som en effektiv metod för att tillverka porösa härdplastmembran för att användas som batteriseparatorer. Ett membran med låg jonresistens och lovande battericyklingsprestanda utvecklades. Sammantaget visar denna avhandling att hybrida system har en roll att spela i system där flera egenskaper måste uppfyllas samtidigt och PIPS är ett lovande verktyg för att tillverka sådana material.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 69
Series
TRITA-CBH-FOU ; 2024:45
Keywords
Lithium-ion, lithium metal, structural battery, hybrid electrolyte, oligomer, ion transport, molecular weight, polymerization-induced phase separation, separator, Litiumjon, litiummetal, strukturella batterier, hybrida elektrolyter, oligomerer, jontransport, molekylvikt, polymerisationsinducerad fasseparation
National Category
Materials Chemistry Polymer Chemistry Energy Engineering
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-354363 (URN)978-91-8106-070-6 (ISBN)
Public defence
2024-11-01, F3 (Flodis), Lindstedtsvägen 26, https://kth-se.zoom.us/j/61354274681, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20241008

Available from: 2024-10-08 Created: 2024-10-04 Last updated: 2024-10-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Emilsson, SamuelLindbergh, GöranJohansson, Mats

Search in DiVA

By author/editor
Emilsson, SamuelLindbergh, GöranJohansson, Mats
By organisation
Coating TechnologyApplied Electrochemistry
Energy EngineeringPolymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf