kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Function Computation via Electromagnetic Superposition: Estimation Problems
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Network and Systems Engineering.ORCID iD: 0000-0002-5761-2580
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 9: Industry, innovation and infrastructure
Abstract [en]

In wireless communication systems, interference is considered one of the main bottlenecks. Because all devices share the same electromagnetic spectrum, communication protocols generally attempt to separate radio resources to avoid interference. In LTE and 5G, devices are not allowed to transmit at their own behest but must receive an uplink grant that dictates which radio resources to use. In Wi-Fi 5, devices are allowed to transmit without a grant from the router, but they have to listen to the channel and wait until it is quiet before transmitting. While these interference-avoiding methods are quite useful, they face the problem of congestion. If too many devices are communicating data simultaneously, the avoidance of interference leads to insufficient spectrum for each user, and quality of service drops dramatically.

In this thesis, we study a novel form of wireless communication that takes a different approach to sharing electromagnetic spectrum. Rather than using orthogonal resources for each device, it schedules devices on the same communication resources, resulting in electromagnetic superposition of their signals. When the receiver listens, the superimposed signal will contain so much interference that it is difficult to distinguish the individual messages. However, it is possible to compute functions of the transmitted messages. Hence, this method is often referred to as Over-the-Air Function Computation (AirComp).

The challenges of AirComp are fundamentally different from those of orthogonal communication. Well-known results on, e.g., phase acquisition, forward error correction, and modulation do not map directly to the AirComp setting. Because of this, the state-of-the-art literature on AirComp usually does not guarantee error-free function computation with a vanishing probability of error but resorts to imperfect function estimation. We have dedicated this thesis to improving the state of estimation algorithms for AirComp. For example, we have developed a power control scheme that eliminates estimation bias for fast-fading channels, and we have leveraged dimensionality-reduction methods to compute certain functions without error.

Our recent work has focused on incorporating realistic assumptions concerning time synchronization and phase acquisition. In orthogonal communication methods, phase alignment is often achieved by careful correction at the receiver side, using reference signals and phase-locked loops. In AirComp, since we are interested in the coherent superposition of signals, the phase cannot be corrected at the receiver side. Transmitter-side phase correction from UEs is challenging, and therefore we have developed non-coherent AirComp methods that avoid this problem. We also specify non-coherent AirComp schemes for digital communication problems in the sparse regime, outperforming orthogonal methods.

Abstract [sv]

I trådlösa kommunikationssystem är interferens en av de mest begränsande flaskhalsarna. Eftersom alla enheter delar samma elektromagnetiska spektrum så tenderar kommunikationsprotokol att separera radioresurser för att undvika interferens. I LTE och 5G får enheterna inte ta initiativ till att sända, utan måste vänta på ett tillstånd som bestämmer vilka resurser de får använda. I Wi-Fi 5 får enheterna ta initiativ, men de måste först lyssna på kanalen och vänta tills det är tyst innan de börjar sända. Dessa interferensundvikande metoder är väldigt användbara men de påverkas oundvikligen av problem med bergänsat spektrum. Om för många enheter vill kommunicera samtidigt så kommer undvikningen av interferens leda till otillräckliga resurser för varje enhet, vilket drastiskt minskar kommunikationskvaliteten.

I den här avhandlingen studerar vi en ny metod för trådlös kommunikation som har ett annat tillvägagångssätt för att samarbeta över det elektromagnetiska spektrumet. Istället för att allokera ortogonala resurser till varje enhet så tilldelas många enheter samma kommunikationsresurser, vilket leder till elektromagnetisk superposition av deras signaler. När mottagaren lyssnar på de kombinerade signalerna, så är det så pass mycket interferens att separeringen av individuella meddelanden blir utmanande. Däremot är det möjligt att beräkna funktioner av meddelanderna, vilket är varför metoden ofta kallas Over-the-Air Function Computation (AirComp) på engelska. På svenska föreslår vi att kalla det signalfogning, för att referera till hur signaler fogas till en funktion i spektrumet.

Tekniken för signalfogning är fundamentalt annorlunda från ortogonala kommunikationsmetoder. Välkända resultat inom till exempel, fastrackning, felrättande koder och modulering fungerar inte på samma sätt för signalfogning. Pågrund av detta så brukar signalfogningslitteraturen inte garantera felfri funktionsberäkning, utan arbetar istället med estimering. Den här avhandlingen är dedikerad till att utveckla bättre estimeringsalgoritmer för signalfogning. Till exempel har vi utvecklat en effektallokeringsalgoritm för att ta bort systematiska fel under snabbfädning och vi har utvecklat kompressionsmetoder för att beräkna specifika funktioner helt utan estimeringsfel.

Våra senaste bidrag till litteraturen har fokuserat på att integrera realistiska antaganden gällande tidssynkronisering och fastrackning. Inom ortogonala kommunikationssystem så sker fastrackning ofta genom noggrann korrektion på mottagarsidan, där referenssignaler från sändaren nyttjas i regleralgoritmer för att styra mottagaroscillatorn. Inom signalfogning kan inte fasen korrigeras på mottagarsidan eftersom vi är intresserade av fasriktig superposition i det elektromagnetiska spektrumet. Samtidigt är faskorrigering på sändarsidan utmanande, och därför har vi arbetat med att utveckla signalfogningsmetoder som inte är beroende av någon faskorrigering. Vi specificerar också sådana metoder för digitala kommunikationsproblem med glesa signaler, vilket överträffar otrogonala metoder.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2024. , p. 63
Series
TRITA-EECS-AVL ; 2024:78
Keywords [en]
Wireless Communications, Over-the-Air Computation, Compressed Sensing, Non-Coherent, Machine Learning, Histogram Estimation, Federated Learning
National Category
Telecommunications
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-354729ISBN: 978-91-8106-074-4 (print)OAI: oai:DiVA.org:kth-354729DiVA, id: diva2:1905076
Public defence
2024-11-04, https://kth-se.zoom.us/j/65644192644, Kollegiesalen, Brinellvägen 6, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20241014

Available from: 2024-10-14 Created: 2024-10-11 Last updated: 2024-10-21Bibliographically approved
List of papers
1. Wireless for Machine Learning: A Survey
Open this publication in new window or tab >>Wireless for Machine Learning: A Survey
Show others...
2022 (English)In: Foundations and Trends in Signal Processing, ISSN 1932-8346, Vol. 15, no 4, p. 290-399Article, review/survey (Refereed) Accepted
Abstract [en]

As data generation increasingly takes place on devices withouta wired connection, Machine Learning (ML) related traffic willbe ubiquitous in wireless networks. Many studies have shownthat traditional wireless protocols are highly inefficient or unsustainableto support ML, which creates the need for new wirelesscommunication methods. In this monograph, we give a comprehensivereview of the state-of-the-art wireless methods that arespecifically designed to support ML services over distributeddatasets. Currently, there are two clear themes within the literature,analog over-the-air computation and digital radio resourcemanagement optimized for ML. This survey gives an introductionto these methods, reviews the most important works, highlightsopen problems, and discusses application scenarios.

Place, publisher, year, edition, pages
Now Publishers Inc., 2022
Keywords
wireless communications, machine learning, federated learning, resource allocation
National Category
Telecommunications
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-313006 (URN)10.1561/2000000114 (DOI)2-s2.0-85135821130 (Scopus ID)
Note

QC 20220610

Available from: 2022-05-27 Created: 2022-05-27 Last updated: 2024-10-11Bibliographically approved
2. Federated Learning Over-the-Air by Retransmissions
Open this publication in new window or tab >>Federated Learning Over-the-Air by Retransmissions
2023 (English)In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 22, no 12, p. 9143-9156Article in journal (Refereed) Published
Abstract [en]

Motivated by the increasing computational capabilities of wireless devices, as well as unprecedented levels of user- and device-generated data, new distributed machine learning (ML) methods have emerged. In the wireless community, Federated Learning (FL) is of particular interest due to its communication efficiency and its ability to deal with the problem of non-IID data. FL training can be accelerated by a wireless communication method called Over-the-Air Computation (AirComp) which harnesses the interference of simultaneous uplink transmissions to efficiently aggregate model updates. However, since AirComp utilizes analog communication, it introduces inevitable estimation errors. In this paper, we study the impact of such estimation errors on the convergence of FL and propose retransmissions as a method to improve FL accuracy over resource-constrained wireless networks. First, we derive the optimal AirComp power control scheme with retransmissions over static channels. Then, we investigate the performance of Over-the-Air FL with retransmissions and find two upper bounds on the FL loss function. Numerical results demonstrate that the power control scheme offers significant reductions in mean squared error. Additionally, we provide simulation results on MNIST classification with a deep neural network that reveals significant improvements in classification accuracy for low-SNR scenarios.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Federated Learning, Over-the-Air Computation, Retransmissions
National Category
Communication Systems Signal Processing Telecommunications
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-327825 (URN)10.1109/twc.2023.3268742 (DOI)001128031700032 ()2-s2.0-85159703045 (Scopus ID)
Note

QC 20230608

Available from: 2023-05-31 Created: 2023-05-31 Last updated: 2025-03-27Bibliographically approved
3. Unbiased Over-the-Air Computation via Retransmissions
Open this publication in new window or tab >>Unbiased Over-the-Air Computation via Retransmissions
2022 (English)In: 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 782-787Conference paper, Published paper (Refereed)
Abstract [en]

Over-the-air computation (AirComp) has recently emerged as an efficient analog method for data acquisition from wireless sensor devices. In essence, AirComp exploits the signal superposition property of a multiple access channel to estimate functions of the transmitted data points. Unless devices are excluded from participation, state-of-the-art AirComp methods do not achieve unbiased function computation, thereby introducing systematic errors in the acquired function. In this paper, we propose a new AirComp scheme that employs retransmissions to achieve probabilistically unbiased function computation. We solve a power control problem that minimizes the bias subject to a peak transmission power constraint. We show that the optimal power control follows a greedy structure that maximizes the devices' contribution to the received function at every retransmission. Numerical results show that the proposed scheme can achieve unbiased function computation with a few retransmissions and drastically reduce the mean squared error in the function estimation compared to the current state-of-the-art.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Series
IEEE Global Communications Conference, ISSN 2334-0983
Keywords
Over-the-Air Computation, Time Diversity, Retransmissions, Estimation, Wireless Communications
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-326383 (URN)10.1109/GLOBECOM48099.2022.10001026 (DOI)000922633500128 ()2-s2.0-85146946315 (Scopus ID)
Conference
IEEE Global Communications Conference (GLOBECOM), DEC 04-08, 2022, Rio de Janeiro, BRAZIL
Note

QC 20230503

Available from: 2023-05-03 Created: 2023-05-03 Last updated: 2024-10-11Bibliographically approved
4. Optimal Receive Filter Design for Misaligned Over-the-Air Computation
Open this publication in new window or tab >>Optimal Receive Filter Design for Misaligned Over-the-Air Computation
2023 (English)In: 2023 IEEE Globecom Workshops, GC Wkshps 2023, Institute of Electrical and Electronics Engineers (IEEE) , 2023, p. 1529-1535Conference paper, Published paper (Refereed)
Abstract [en]

Over-the-air computation (AirComp) is a promising wireless communication method for aggregating data from many devices in dense wireless networks. The fundamental idea of AirComp is to exploit signal superposition to compute functions of multiple simultaneously transmitted signals. However, the time-and phase-alignment of these superimposed signals have a significant effect on the quality of function computation. In this study, we analyze the AirComp problem for a system with unknown random time delays and phase shifts. We show that the classical matched filter does not produce optimal results, and generates bias in the function estimates. To counteract this, we propose a new filter design and show that, under a bound on the maximum time delay, it is possible to achieve unbiased function computation. Additionally, we propose a Tikhonov regularization problem that produces an optimal filter given a tradeoff between the bias and noise-induced variance of the function estimates. When the time delays are long compared to the length of the transmitted pulses, our filter vastly outperforms the matched filter both in terms of bias and mean-squared error (MSE). For shorter time delays, our proposal yields similar MSE as the matched filter, while reducing the bias.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-350009 (URN)10.1109/GCWkshps58843.2023.10464656 (DOI)2-s2.0-85190287853 (Scopus ID)
Conference
2023 IEEE Globecom Workshops, GC Wkshps 2023, Kuala Lumpur, Malaysia, Dec 4 2023 - Dec 8 2023
Note

Part of ISBN 9798350370218

QC 20240704

Available from: 2024-07-04 Created: 2024-07-04 Last updated: 2024-10-11Bibliographically approved
5. Over-the-Air Histogram Estimation
Open this publication in new window or tab >>Over-the-Air Histogram Estimation
Show others...
2024 (English)In: ICC 2024 - IEEE International Conference on Communications, Institute of Electrical and Electronics Engineers (IEEE) , 2024, p. 4717-4722Conference paper, Published paper (Refereed)
Abstract [en]

We consider the problem of secure histogram es-timation, where n users hold private items xi from a size-d domain and a server aims to estimate the histogram of the user items. Previous results utilizing orthogonal communication schemes have shown that this problem can be solved securely with a total communication cost of O(n2log(d)) bits by hiding each item xi with a mask. In this paper, we offer a different approach to achieving secure aggregation. Instead of masking the data, our scheme protects individuals by aggregating their messages via a multiple-access channel. A naive communication scheme over the multiple-access channel requires d channel uses, which is generally worse than the O(n21og(d)) bits communication cost of the prior art in the most relevant regime d >> n. Instead, we propose a new scheme that we call Over-the-Air Group Testing (AirG T) which uses group testing codes to solve the histogram estimation problem in O(n log(d)) channel uses. AirGT reconstructs the histogram exactly with a vanishing probability of error Perror= O(d-T) that drops exponentially in the number of channel uses T.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
Goal-Oriented Communications, Group Testing, Histogram Estimation, Non-Coherent, Over-the-Air Computation
National Category
Communication Systems Telecommunications Signal Processing
Identifiers
urn:nbn:se:kth:diva-353509 (URN)10.1109/ICC51166.2024.10622573 (DOI)2-s2.0-85202875872 (Scopus ID)
Conference
59th Annual IEEE International Conference on Communications, ICC 2024, June 9-13, 2024, Denver, United States of America
Note

Part of ISBN: 9781728190549

QC 20240924

Available from: 2024-09-19 Created: 2024-09-19 Last updated: 2024-10-11Bibliographically approved
6. Majority Vote Compressed Sensing
Open this publication in new window or tab >>Majority Vote Compressed Sensing
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We consider the problem of non-coherent over-the-air computation (AirComp), where $n$ devices carry high-dimensional data vectors of sparsity and the sum of these data vectors has to be computed at a receiver. Previous results on non-coherent AirComp generally require more than channel uses to compute functions of , where the extra redundancy is used to combat non-coherent signal aggregation. However, if the data vectors are sparse, this property can be exploited to offer significantly cheaper communication. In this paper, we propose to use random transforms to transmit lower-dimensional measures of the data vectors. These measures are communicated to the receiver using a majority vote (MV)-AirComp scheme, which estimates a bit-vector of the signs of the aggregated measures, i.e., . By leveraging 1-bit compressed sensing (1bCS) at the receiver, the real-valued and high-dimensional aggregate is estimated using and supplementary information about the random transform. We prove analytically that the proposed MVCS scheme estimates the aggregate data vector within a -norm ball of radius in channel uses. Moreover, we specify algorithms that leverage MVCS for histogram estimation and distributed machine learning. Finally, we provide numerical results that reveal the advantage of MVCS compared to the state-of-the-art.

Keywords
Over-the-Air Computation, Compressed Sensing, Non-Coherent, Majority Vote, Machine Learning, Histogram Estimation.
National Category
Communication Systems Telecommunications
Research subject
Telecommunication
Identifiers
urn:nbn:se:kth:diva-354728 (URN)
Funder
Swedish Foundation for Strategic Research, FUS21-0004
Note

QC 20241011

Available from: 2024-10-11 Created: 2024-10-11 Last updated: 2024-10-11Bibliographically approved

Open Access in DiVA

kappa(21960 kB)444 downloads
File information
File name SUMMARY01.pdfFile size 21960 kBChecksum SHA-512
766dcb23f0141680a6830427b63e86e14cc2fd19fcde8451416557c46d9af1fdc5db7107c1dcf1c4490ea5e91fe06aaee0a63533eb46fab9153a38e0e6c89586
Type fulltextMimetype application/pdf

Authority records

Hellström, Henrik

Search in DiVA

By author/editor
Hellström, Henrik
By organisation
Network and Systems Engineering
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar
Total: 0 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 387 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf