kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Online Supervisory System for In-Process Optimization of Calcium Additions by Continuously Monitoring the State of Non-metallic Inclusions Inside Low-Alloyed Liquid Steels
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process.ORCID iD: 0000-0003-2076-7228
voestalpine Stahl GmbH, voestalpine Straße 3, 4020, Linz, Austria.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process.ORCID iD: 0000-0002-9801-0842
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Process.ORCID iD: 0000-0002-6127-5812
2024 (English)In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 55, no 3, p. 1395-1413Article in journal (Refereed) Published
Abstract [en]

A decision support system was developed using supervised machine learning (ML) approach for optimization of calcium (Ca) additions by continuously monitoring the physical state of non-metallic inclusions (NMIs) inside low-alloyed liquid steels. In this work, two instances were considered to design the base algorithm for the proposed supervisory system: (1) Clogging of submerged entry nozzle (SEN) during continuous casting of steels due to accumulation of solid oxide non-metallic inclusions (NMIs) and ( 2) Ca treatment during secondary steelmaking for modification of oxide NMIs from solid to liquid state to avoid SEN clogging. At first, experimental investigations were carried out on liquid steel samples from three low-alloyed Ca-treated steel grades from the same steel family to evaluate the characteristics of solid oxide NMIs that cause SEN clogging. In the next step, data-driven models were developed using an in-house ML algorithm trained primarily with process data for calculating the value of the newly proposed dummy parameter 'Clog.' These models, after testing, were architected to develop a supervisory system based on experimental investigations and data-driven models. The objective of this proposed supervisory system was to predict the optimum quantity of Ca needed for successful modification of NMIs from solid to liquid state to avoid SEN clogging based on the forecasted 'Clog' value. Finally, industrial data from ~ 3000 heats were tested to verify the results obtained from the developed supervisory system. The results confirmed that this novel supervisory system could predict the optimum class of Ca for all studied steel grades with 95 to 98 pct accuracy. The integration of this online supervisory system in steel production is expected to minimize operators' corrective actions in achieving realistic control of Ca additions.

Place, publisher, year, edition, pages
2024. Vol. 55, no 3, p. 1395-1413
Keywords [en]
Calcium treatment, Clogging, Machine learning, Online monitoring, Submerged Entry Nozzle
National Category
Metallurgy and Metallic Materials
Research subject
Metallurgical process science
Identifiers
URN: urn:nbn:se:kth:diva-354804DOI: 10.1007/s11663-024-03035-zOAI: oai:DiVA.org:kth-354804DiVA, id: diva2:1905381
Funder
KTH Royal Institute of TechnologyEU, Horizon 2020, 869815
Note

QC 20241021

Available from: 2024-10-14 Created: 2024-10-14 Last updated: 2024-10-21Bibliographically approved
In thesis
1. Data-driven modeling for online predictions in steelmaking: To optimize calcium additions and castability in low alloyed liquid steels
Open this publication in new window or tab >>Data-driven modeling for online predictions in steelmaking: To optimize calcium additions and castability in low alloyed liquid steels
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this work, innovative data-driven process models were designed, developed, and examined online for their application in the steel industry. The objective was to help operators in decision making during calcium additions in liquid steel and casting of steel grades which are susceptible to submerged nozzle (SEN) clogging. The developed data-driven process models were examined in a real industrial environment to demonstrate the use of supervised machine learning (ML) and deep learning (DL) algorithms for online predictions of specific process parameters. The adaptation of two novel data-driven decision support systems in production helped steelmakers to address the critical challenge of minimizing costly production stops caused by SEN clogging. Calcium (Ca) additions during secondary steelmaking is a well-adopted practice to transform solid oxide non-metallic inclusions (NMIs) into globular shaped liquid oxides. This practice of Ca treatment helps to avoid SEN clogging. Hence, operators in steel plants follow standard operating procedures (SOP) that detail the use of static quantity of Ca wire additions. However, these SOPs, providing a baseline for production, do not account for the dynamic nature of steelmaking processes and the varying chemistry of NMIs for each 'heat' produced. To address this gap, the impact of varying CaSi wire additions, beyond the SOP's guidelines, on the transformation and behavior of NMIs in low-alloyed steel grades was explored by developing the 'ClogCalc' decision support system. The aim was to establish a more reliable and responsive approach to Ca treatment, potentially leading to more effective control in preventing SEN clogging. The implementation of 'ClogCalc' has demonstrated a significant 30% reduction in SENclogging, as evidenced by industrial trials at Voestalpine steel plant.

Recognizing 'castability' of steel by monitoring the conditions of SEN clogging is essential for uninterrupted continuous casting. With this information prior to casting, operators can take preventive action against possible SEN clogging occurrences, thus reducing unplanned downtimes. In response to the severe implications of SEN clogging, a novel approach to forecast 'castability' of steels was introduced by developing the 'Checkcast' decision support system. The adaptive neuro fuzzy inference system (ANFIS) and long short-term memory (LSTM) network model was used as a base algorithm for estimating 'castability' of steel grade. The output of 'Checkcast' helps to anticipate the event of clogging by analyzing both the past condition of the SENs and changes in the steel chemistry during the transport of the steel from refining ladle to the tundish. The verification was conducted at the Sidenor steel plant. While the primary focus of this study was to develop data-driven process models, efforts were also made to study the foundational principles governing the SEN clogging and evolution of NMIs in studied steel grade. Laboratory experiments were also conducted on liquid steel samples obtained from steel plants. Parametric liquid windows were derived using systematic thermodynamic assessments using FactSage software. In addition, to understand the wetting characteristics at interfaces of NMIs and the SEN refractory, interfacial properties were calculated using ab-initio calculations.

Abstract [sv]

I den här studien utvecklades och undersöktes innovativa datadrivna processmodeller för en integreradanvändning inom stålindustrin. Målet var att underlätta för operatörer i stålverken att bestämmakalciumtillsatser i flytande stål, samt att ge indikationer om gjutbarheten hos stålsorter som är känsligaför ingensättning i de gjutrör (SEN) som leder stålet till kokillen. De utvecklade processmodellernaimplementerades i en verklig industriell miljö utan att förändra den befintliga IT-infrastrukturen istålverket i syfte att visa användningsområden för övervakad maskininlärning (ML) och djupinlärning(DL) av integrerad bevakning och förutsägelser. Anpassningen av dessa datadrivna modeller iproduktionen hjälpte ståltillverkarna att hantera det kritiska problemet med att minimera kostsammaproduktionsstopp orsakade av SEN-igensättning. Kalciumtillsättning under sekundär ståltillverkningär en väl vedertaget metod för att omvandla icke-metalliska inklusioner (NMIs) i fasta oxider tillglobulär-formade flytande oxider. Detta förfaringssätt hjälper till att undvika att SEN-röret täpps igen.Därför följer operatörerna i stålverket de standard operative procedurer (SOP) som föreskriveranvändningen av bestämd mängd av Ca-tillsatser för specifika stålsorter. Dessa SOP utgör en baslinjeför produktionen, men de tar inte hänsyn till ståltillverkningsprocessens dynamiska karaktär eller denvarierande kemin hos NMIs för varje ‘värme’ som produceras. För att ta itu med denna kunskapsbristutforskades i denna studie effekten av att variera Ca-tillsatser, utöver de standardiserade SOPriktlinjerna,på omvandlingen och beteendet hos NMIs i låglegerade stålsorter genom att utveckla dendatadrivna processmodellen ‘ClogCalc’. Syftet var att etablera en mer tillförlitlig och responsiv metodför kalciumbehandling, vilket potentiellt leder till mer effektiv kontroll för att förhindra SENigensättning.Resultaten efter implementeringen av ‘ClogCalc’-modellen har betydande konsekvenseri att reducera SEN-igensättning med upp till 30%.

Att känna igen gjutbarheten hos stål genom att övervaka tillståndet hos SEN är också väsentligt för enoavbruten gjutning. Med denna information före gjutning kan operatörer vidta förebyggande åtgärdermot möjliga igensättningshändelser, vilket minskar oplanerade driftstopp. Som svar på de allvarligakonsekvenserna av SEN-igensättning introducerades ett nytt tillvägagångssätt för att förutsegjutbarheten hos stål genom att utveckla modellen ‘Checkcast’. ANFIS (från engelska ‘AdaptiveNeuro-Fuzzy Inference System’) och nätverk med LSTM (‘Long Short-Term Memory’) användes sombasalgoritmer för denna modell. Utdata från denna processmodell hjälpte till att förutse händelsen avigensättning genom att analysera både det tidigare tillståndet hos SEN och förändringarna i stålkeminunder transporten av stålskänken från raffinering till gjutningsprocessen. Medan den primära fokusen idenna studie var att utveckla datadrivna processmodeller, gjordes även ansträngningar för att studerade grundläggande principerna som styr SEN-igensättning och förloppet av icke-metalliskakontaminationer (NMIs) i de olika stålsorterna. Laboratorieexperiment utfördes på flytande stålproverfrån stålverk. Det parametriska vätskefönstret härleddes genom systematiska termodynamiska analysermed hjälp av FactSage-programvaran. För att förstå agglomerations- och vätningsegenskaperna vidgränssnitten mellan NMI och stålsmältan, beräknades materialens gränsytegenskaper med hjälp av en ab-initio-metod.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 155
Series
TRITA-ITM-AVL ; 2024:23
Keywords
calcium treatment, castability, clogging, data-driven, steelmaking
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-354824 (URN)978-91-8106-081-2 (ISBN)
Public defence
2024-11-08, F3 / https://kth-se.zoom.us/j/62350179538, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

Principal supervisor: Assoc. Prof. Björn Glaser, KTH

Co-supervisor: Docent Dr. Andrey Karasev, KTH

Chair at the defense: Prof. Mikael Ersson, KTH

Opponent: Prof. Qifeng Shu, University of Oulu, Finland 

Members of the grading committee         

Dr. Dmitrij Ladutkin, Saarstahl AG, Tyskland

Assoc. Prof. Valentina Colla, Scuola Superiore Sant'Anna, Italien

Prof. Dr. Stefan Sandfeld, Jülich Forschungszentrum, Tyskland

Substitute: Assoc. Prof. Stefan Schönecker, Materialvetenskap, KTH

Available from: 2024-10-15 Created: 2024-10-14 Last updated: 2024-10-31Bibliographically approved

Open Access in DiVA

fulltext(3948 kB)50 downloads
File information
File name FULLTEXT01.pdfFile size 3948 kBChecksum SHA-512
52a8c5849d036556f0fe19245d5fa276fca96c53a826b41cef0e5480d65d5297ae2f635a2a48879d331b528724a6647119f9ca79466fe7cb3f176abc0ef4f228
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Kuthe, Sudhanshu

Search in DiVA

By author/editor
Kuthe, SudhanshuKarasev, AndreyGlaser, Björn
By organisation
Process
In the same journal
Metallurgical and materials transactions. B, process metallurgy and materials processing science
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 52 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf