Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
A multitude of physical phenomena are accurately modeled by partial differential equations (PDEs). These equations are complicated to solve in general, and when an analytical solution is not able to be found, a numerical method can give an approximate solution. This can be very useful in many applications. This thesis explores the development and analysis of cut finite element methods (CutFEM) for discretising PDEs with a focus on preserving divergence conditions essential in applications such as fluid dynamics and electromagnetism. CutFEM has been developed with the aim to simplify distretising PDEs in domains with complicated geometries, by allowing the geometry to be positioned arbitrarily relative to the computational mesh. Traditional CutFEM have failed to maintain the divergence conditions, leading to numerical inaccuracies. Following the mixed finite element method (FEM) framework, the research contained herein introduces novel strategies that preserve the divergence at the discrete level and addresses other key challenges when discretizing PDEs in geometries unfitted to the computational mesh. For example, the techniques are also able to control the condition number of the linear systems. The virtual element method (VEM) is another method able to handle complicated geometries. It does this by allowing for a mesh to be constructed from general polytopal elements, not just triangles or rectangles. One work of the thesis investigates the spectral condition number of the mixed VEM, demonstrating the effectiveness of auxiliary space preconditioning in bounding spectral condition numbers independently of mesh element aspect ratios.
Abstract [sv]
Ett flertal fysikaliska fenomen modelleras noggrant av partiella differentialekvationer (PDE). Dessa ekvationer är generellt svåra att lösa, och när en analytisk lösning inte kan hittas kan en numerisk metod ge en ungefärlig lösning. Detta kan vara mycket användbart inom många tillämpningar. Denna avhandling utvecklar och analyserar skurna finita elementmetoder (CutFEM) för PDE med fokus på att bevara divergensvillkor som är väsentliga inom tillämpningar som strömningsdynamik och elektromagnetism. CutFEM har utvecklats med syftet att förenkla diskretiseringen av PDE i domäner med komplicerade geometrier, genom att tillåta att geometrin placeras godtyckligt relativt beräkningsnätet. Traditionella CutFEM klarar ej att bevara divergensvillkoren, vilket leder till numeriska fel. Inom ramen för den mixade finita elementmetoden (FEM) introducerar forskningen i denna avhandling nya strategier som bevarar divergensen på diskret nivå och hanterar övriga viktiga utmaningar rörandes diskretiseringen av PDEer ställda inom geometrier som inte passar till beräkningsnätet. Till exempel kan teknikerna också kontrollera konditionstalet för de linjära systemen. Virtuella elementmetoden (VEM) är en annan metod som kan hantera komplicerade geometrier vid nätgenerering. Den sista delen av avhandlingen undersöker det spektrala konditionstalet för den mixade VEM och visar effektiviteten av hjälprums-prekonditionering för att begränsa spektrala konditionstal oberoende av kvoten av elementens diameter i kvadrat över area.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:38
Keywords
mixed finite element methods, cut finite element methods, virtual element methods, convervation laws
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics, Numerical Analysis
Identifiers
urn:nbn:se:kth:diva-354437 (URN)978-91-8106-014-0 (ISBN)
Public defence
2024-10-25, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note
QC 2024-10-07
2024-10-072024-10-042024-10-15Bibliographically approved