kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of repetitive ELM transients on ITER divertor tungsten monoblock top surfaces
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.ORCID iD: 0009-0001-7333-5544
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.ORCID iD: 0000-0002-6712-3625
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.ORCID iD: 0000-0001-9632-8104
ITER Org, Route Vinon sur Verdon, CS 90 046, F-13067 St Paul Les Durance, France.
2024 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 64, no 12, article id 126022Article in journal (Refereed) Published
Abstract [en]

Owing to the high stored energy of ITER plasmas, the heat pulses due to uncontrolled Type I edge localized modes (ELMs) can be sufficient to melt the top surface of several poloidal rows of tungsten monoblocks in the divertor strike point regions. Coupled with the melt motion associated with tungsten in the strong tokamak magnetic fields, the resulting surface damage after even a comparatively small number of such repetitive transients may have a significant impact on long-term stationary power handling capability. The permissible numbers set important boundaries on operation and on the performance required from the plasma control system. Modelling is carried out with the recently updated MEMENTO melt dynamics code, which is tailored to tackle melt motion problems characterized by a vast spatio-temporal scale separation. The crucial role of coupling between surface deformation and shallow angle heat loading in aggravating melt damage is highlighted. As a consequence, the allowable operational space in terms of ELM-induced transient heat loads is history-dependent and once deformation has occurred, weaker heat loads, incapable of melting a pristine surface, can further extend the damage.

Place, publisher, year, edition, pages
IOP Publishing , 2024. Vol. 64, no 12, article id 126022
Keywords [en]
tungsten melting, ITER monoblock, shallow-angle loading, melt motion, MEMENTO code
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-355178DOI: 10.1088/1741-4326/ad7f6bISI: 001327906400001Scopus ID: 2-s2.0-85207067793OAI: oai:DiVA.org:kth-355178DiVA, id: diva2:1907958
Note

QC 20241024

Available from: 2024-10-24 Created: 2024-10-24 Last updated: 2025-04-11Bibliographically approved
In thesis
1. Modelling the damage of metallic plasma-facing components under energetic transient events in fusion reactors
Open this publication in new window or tab >>Modelling the damage of metallic plasma-facing components under energetic transient events in fusion reactors
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Magnetic confinement fusion represents one of the most promising pathways to achieving sustainable and clean energy production. In this approach, strong magnetic fields are used to confine hot plasma within a device preventing it from coming into direct contact with the vessel walls. However, plasma-wall interactions remain an unavoidable challenge, as some heat and particles inevitably escape confinement, particularly during energetic transient events. These interactions pose a significant threat to the integrity of plasma-facing components (PFCs), which are subjected to extreme thermal and particle loads. Among the various forms of damage caused by such loads, melt damage is particularly concerning due to its potential to severely degrade the performance and longevity of PFCs. 

To address these challenges, the MEMOS-U physics model was developed to simulate macroscopic melt motion in fusion environments. MEMOS-U simplifies the computational heavy thermoelectric magnetohydrodynamic equations by employing the shallow water approximation, which reduces the dimensionality of the problem. MEMOS-U has been validated against a series of dedicated tokamak experiments, demonstrating its ability to capture the essential features of melt motion in fusion environments.

Building on the MEMOS-U model, the MEMENTO code was developed as a modern numerical implementation designed to further enhance the predictive capabilities of melt motion simulations. MEMENTO leverages the AMReX framework to create and maintain a non-uniform, adaptive grid, enabling efficient simulations of large PFCs over long time scales. The code includes solvers for heat transfer, fluid dynamics, and current propagation, all of which are fully coupled to accurately model the interplay between thermal loading, melt motion, and electromagnetic effects. 

The MEMENTO code has been validated against experimental data from dedicated controlled melting experiments carried out in the ASDEX-Upgrade and WEST tokamaks. Predictive studies with MEMENTO have provided valuable insights into the potential melt damage in future tokamaks. In summary, MEMENTO represents a significant advancement in the modeling of macroscopic melt motion in fusion environments. By implementing the MEMOS-U physics model in a new code, MEMENTO provides a reliable and computationally efficient tool able to accurately predict melt damage in future reactors for regimes that could not be probed before. 

Abstract [sv]

Magnetisk inneslutningsfusion representerar en av de mest lovande vägarna för att uppnå hållbar och ren energiproduktion. I detta tillvägagångssätt används starka magnetfält för att begränsa het plasma i en anordning som förhindrar att den kommer i direkt kontakt med kärlväggarna. Emellertid förblir plasma vägginteraktioner en oundviklig utmaning, eftersom en del värme och partiklar oundvikligen undkommer instängdhet, särskilt under energetiska övergående händelser. Dessa interaktioner utgör ett betydande problem mot integriteten hos plasmavända komponenter (PFC), som utsätts för extrema värme- och partikelbelastningar. Bland de olika former av skador som orsakas av sådana belastningar är smältskador särskilt oroande på grund av dess potential att allvarligt försämra prestandan och livslängden hos PFC.

För att möta dessa utmaningar utvecklades MEMOS-U-fysikmodellen för att simulera makroskopisk smältrörelse i fusionsmiljöer. MEMOS-U förenklar de beräkningsmässiga tunga termoelektriska magnetohydrodynamiska ekvationerna genom att använda den grunt vatten approximationen, vilket minskar dimensionaliteten av problemet. MEMOS-U har validerats mot en serie dedikerade tokamak-experiment, som visar dess förmåga att fånga de väsentliga egenskaperna hos smältrörelse i fusionsmiljöer.

Med utgångspunkt i MEMOS-U-modellen utvecklades MEMENTO-koden som en modern numerisk implementering utformad för att ytterligare förbättra de förutsägande kapaciteterna hos smältrörelsesimuleringar. MEMENTO utnyttjar AMReX-ramverket för att skapa och underhålla ett oenhetligt, adaptivt rutnät, vilket möjliggör effektiva simuleringar av stora PFC:er över långa tidsskalor. Koden inkluderar lösare för värmeöverföring, strömningsdynamik och strömspropagering, som alla är helt kopplade för att exakt modellera samspelet mellan termisk belastning, smältrörelse och elektromagnetiska effekter.

MEMENTO-koden har validerats mot experimentella data från dedikerade kontrollerade smältexperiment utförda i ASDEX-Upgrade och WEST tokamaks. Prediktiva studier med MEMENTO har gett värdefulla insikter om potentiella smältskador i framtida tokamaks. Sammanfattningsvis representerar MEMENTO ett betydande framsteg i modelleringen av makroskopisk smältrörelse i fusionsmiljöer. Genom att implementera MEMOS-U fysikmodellen i en ny kod tillhandahåller MEMENTO ett tillförlitligt och beräknings-effektivt verktyg som kan förutsäga smältskador i framtida reaktorer för regimer som inte kunde sonderas tidigare.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. p. ix, 80
Series
TRITA-EECS-AVL ; 2025:41
Keywords
Magnetic confinement fusion, plasma-wall interactions, metallic plasma-facing components, melt damage, melt motion, MEMOS-U, MEMENTO, thermoelectric magnetohydrodynamics
National Category
Fusion, Plasma and Space Physics
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-362322 (URN)978-91-8106-243-4 (ISBN)
Public defence
2025-05-12, https://kth-se.zoom.us/j/62498661239, F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20250411

Available from: 2025-04-11 Created: 2025-04-10 Last updated: 2025-04-28Bibliographically approved

Open Access in DiVA

fulltext(3105 kB)9 downloads
File information
File name FULLTEXT01.pdfFile size 3105 kBChecksum SHA-512
00c36268acdbf2d2cd2a2b2428173db43602ed18366e4c677b661ba789cfc48c55cbf45d06bbd6568022466ff1853688e134303d64bc034916de14669ebe10dd
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Paschalidis, KonstantinosRatynskaia, Svetlana V.Tolias, Panagiotis

Search in DiVA

By author/editor
Paschalidis, KonstantinosRatynskaia, Svetlana V.Tolias, Panagiotis
By organisation
Space and Plasma Physics
In the same journal
Nuclear Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 9 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf