kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Consistent modelling of ICRH using FEMIC-Foppler
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science. (Heating and Current Drive)
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science. (Heating and Current Drive)ORCID iD: 0000-0002-7142-7103
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science. (Heating and Current Drive)ORCID iD: 0000-0002-3280-2361
Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.ORCID iD: 0009-0004-1375-9929
2024 (English)Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

During ion cyclotron resonance heating (ICRH) in fusion plasmas the fast magnetosonic wave transports wave energy to the plasma core, where it is transferred to both electrons, thermal ions and fast ions. The modelling of these processes requires a self-consistent treatment of the wave propagation and absorption, as well as the acceleration of fast ions by the wave. Here, a new self-consistent model is presented based on the FEMIC full wave solver [1] and the FOPPLER Fokker-Planck solver [2]. The use of optimised commercial wave solvers in FEMIC and a reduced 1D Fokker-Planck model make the model relatively fast and therefore suitable for e.g. the use in a transport solver.The novelty of this model, compared to other codes with 1D Fokker-Planck models, is the consistent description of Doppler physics in the FEMIC and FOPPLER codes. This description is of particular interest for scenarios with strong absorption around the ion-ion hybrid layer, like in 3-ion scenarios [3] and certain minority scenarios. Here we will present modelling of such scenarios, quantifying the impact of the Doppler shift, as well as characterising the non-linear effects associated with the acceleration of fast ions.

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

References:[1] P. Vallejos et al., Nuclear Fusion 59, 076022 (2019)[2] L. Bähner et al., to be submitted (2024) [3] Y.O. Kazakov et al., Nuclear Fusion 55, 032001 (2015)

Place, publisher, year, edition, pages
2024.
Keywords [en]
fusion, ICRH, Fokker-Planck, consistent, modelling
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-355972OAI: oai:DiVA.org:kth-355972DiVA, id: diva2:1911190
Conference
50th EPS Conference on Plasma Physics, Salamanca, Spain, 8–12 July 2024
Available from: 2024-11-06 Created: 2024-11-06 Last updated: 2024-12-21
In thesis
1. Spatial dispersion in finite element models for ion cyclotron resonance heating: Theory and applications for toroidal plasmas
Open this publication in new window or tab >>Spatial dispersion in finite element models for ion cyclotron resonance heating: Theory and applications for toroidal plasmas
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nuclear fusion can provide large amounts of energy from earth-abundant elements,with no carbon emissions and little radioactive waste. For the nuclei to fuse under earth-relevant conditions, temperatures in excess of 100 000 000 °C are needed. At these temperatures, the fuel is in a plasma state. A common method to heat the plasma is ion cyclotron resonance heating (ICRH), where radiofrequency waves are launched from an antenna on the vessel wall into the plasma to resonate with the gyrating ions. Wave propagation and dissipation in hot magnetized plasmas is a nonlocal process, where the plasma response at a given point depends on the particles' cumulative acceleration along their orbits. To quantify how the plasma is heated, numerical simulations are required. This thesis aims to provide a numerical framework that can simulate the coupling of the wave from the antenna to the plasma, the wave propagation and dissipation inside the plasma, as well as the acceleration of individual ions and how they deposit their energy in the plasma. 

To this end, an iterative scheme that adds nonlocal effects to an otherwise local finite element (FE) model is developed. FE models are suitable for modeling irregular geometries and wave coupling through the cold scrape-off layer plasma, but not necessarily the hot core plasma. Examples of nonlocal effects that are added iteratively are mode conversion from the fast magnetosonic wave to the ion Bernstein wave (IBW) and up- and downshift of the parallel wavenumber. Further, the wave solver is coupled to a Fokker-Planck solver that evaluates the effect of ICRH on the ion distribution function. The models presented in this thesis are in 1D or 2D axisymmetry, but are not conceptually different from a generalization to 3D.

Abstract [sv]

Kärnfusion kan producera stora mängder energi från vanligt förekommande grundämnen på jorden utan att släppa ut koldioxid, och ger endast upphov till små mängder radioaktivt avfall. För att atomkärnor ska slås samman under förhållanden som är relevanta för jorden krävs temperaturer som överstiger 100 000 000 °C. Vid dessa temperaturer befinner sig bränslet i ett plasmatillstånd. En vanlig metod för att värma plasman är jon-cyclotronresonans-uppvärmning (ICRH), där radiovågor skickas från en antenn på kärlets vägg in i plasmat för att resonera med de roterande jonerna. Vågutbredning och dissipation i varma magnetiserade plasman är en ickelokal effekt, där plasmats svar i en given punkt beror på partiklarnas ackumulerade acceleration längs deras banor. För att kvantifiera hur ett plasma värms upp krävs numeriska simuleringar. Målet med denna avhandling är att tillhandahålla ett numeriskt ramverk för simulering av koppling av vågen från antennen till plasmat, vågutbredning och dissipation inuti plasmat, samt accelerationen av enskilda partiklar och hur de deponerar sin energi i plasmat.

För att uppnå detta har en iterativ metod som lägger till ickelokala effekter till en i övrigt lokal modell baserad på finita elementmetoden utvecklats. Den finita elementmetoden är lämplig för att modellera oregelbundna geometrier och vågkoppling genom det kalla randplasmat, men inte det varma plasmat i mitten av maskinen. Exempel på ickelokala effekter som läggs till iterativt är modkonvertering från den snabba magnetosoniska vågen till jon-Bernstein-vågen, och upp- och nedskiftet av det parallella vågtalet. Dessutom kopplas våglösaren till en Fokker-Planck-lösare som utvärderar effekten som ICRH har på jonernas fördelningsfunktion. Modellerna som presenteras i avhandlingen är i 1D eller 2D och rotationssymmetriska, men skiljer sig inte konceptuellt från en generalisering till 3D.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xi, 71
Series
TRITA-EECS-AVL ; 2025:9
Keywords
Fusion, Plasma physics, Plasma heating, Tokamak, Ion cyclotron resonance heating, Spatial dispersion
National Category
Fusion, Plasma and Space Physics
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-357971 (URN)978-91-8106-160-4 (ISBN)
Public defence
2025-01-29, https://kth-se.zoom.us/j/67880732648, F3, Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20241230

Available from: 2024-12-30 Created: 2024-12-21 Last updated: 2025-01-20Bibliographically approved

Open Access in DiVA

fulltext(7634 kB)76 downloads
File information
File name FULLTEXT01.pdfFile size 7634 kBChecksum SHA-512
fc83c42d0f214c6736614d2deaca83ed96dc5f3c596e87140203c2f723ce1040dfcc7fd898c0092b3e756a3a31fd5d3b4b59218c2f837786b202880e3ec62375
Type fulltextMimetype application/pdf

Authority records

Bähner, LukasJonsson, ThomasZaar, Björn

Search in DiVA

By author/editor
Bähner, LukasJonsson, ThomasZaar, BjörnEriksson, Lars-Göran
By organisation
Electromagnetic Engineering and Fusion Science
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 76 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 518 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf