kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development of a Laboratory Unit to Study Internal Injector Deposits Formation
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Process Technology. Scania CV AB R&D Materials Technology.ORCID iD: 0000-0002-7332-0238
Scania CV AB R&D Materials Technology.
Scania CV AB R&D Materials Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Process Technology.ORCID iD: 0000-0002-4526-5657
Show others and affiliations
2023 (English)In: / [ed] SAE International, 2023, Vol. 2023, article id 2023-24-0078Conference paper, Published paper (Refereed)
Abstract [en]

 The formation of deposits in the fuel systems of heavy- duty engines, using drop-in fuels, has been reported in recent years. Drop-in fuels are of interest because they allow higher levels of alternative fuels to be blended with conventional fuels that are ompatible with today’s engines. The precipitation of insolubles in the drop-in fuel can lead to clogging of fuel filters and internal injector deposits, resulting in increased fuel consumption and engine drivability problems. The possible mechanisms for the formation of the deposits in the fuel system are not yet fully understood. Several explanations such as operating conditions, fuel quality and contamination have been reported. To investigate injector deposit formation, several screening laboratory test methods have been developed to avoid the use of more costly and complex engine testing. To further evaluate and understand the formation of internal injector deposits in heavy-duty engines, a thermal laboratory test method has been developed. The test method is called Thermal Deposits Test (TDT) and it is inspired by Jet Fuel Thermal Oxidation Test (JFTOT) method. This test unit can be used to study in applications where a fluid is in contact with a hot surface. The method uses common laboratory hardware and readily available off-the-shelf parts, making it inexpensive to build and very flexible to operate. Deposits are collected on a metal foil, which makes it easier to analyze. This paper describes the construction of the apparatus and its performance. Experimental tests with diesel fuel, doped with soap-type soft particles, which contain typical particles that can form deposits, are performed, and compared with JFTOT results. Analytical techniques, such as Scanning Electron Microscopy with Energy Dispersive X-Ray, Fouriertransform Infrared Spectroscopy, and Pyrolysis coupled with Gas Chromatography-Mass Spectroscopy and Ellipsometry were used. Conclusions about the performance of the doped fuel are drawn from the test. Future plans are to study the mechanisms behind the formation of internal diesel injector deposits. 

Place, publisher, year, edition, pages
2023. Vol. 2023, article id 2023-24-0078
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-355986DOI: 10.4271/2023-24-0078Scopus ID: 2-s2.0-85174000099OAI: oai:DiVA.org:kth-355986DiVA, id: diva2:1911262
Conference
SAE, 16th International Conference on Engines & Vehicles for Sustainable Transport, September 2023, Capri, ITALY
Note

QC 20241107

Available from: 2024-11-07 Created: 2024-11-07 Last updated: 2024-11-14Bibliographically approved
In thesis
1. Internal Diesel Injector Deposits: Characterization, formation mechanisms, and replication
Open this publication in new window or tab >>Internal Diesel Injector Deposits: Characterization, formation mechanisms, and replication
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

 Heavy-duty transportation is a significant contributor to greenhouse gas emissions. One way to reduce CO2 emissions from this sector is through the use of drop-in fuels, where alternative fuels are used directly or blended with conventional fuels. However, these blends can have solubility issues, leading to precipitation of soft particles, resulting in clogged fuel filters, and disrupt injector performance, thereby reducing engine efficiency and increasing fuel consumption. As advanced fuel systems are introduced and blending proportions of alternative fuels rise to meet stricter environmental regulations, these challenges are likely to become more prevalent. Therefore, research in this area is essential, as the use of drop-in fuels is expected to grow and the associated problems are anticipated to become more common. This thesis investigates the formation of internal diesel injector deposits (IDIDs) from drop-in fuels and proposes mechanisms for their formation. The research involved characterizing deposits from field injectors and developing experimental methods to generate deposits under controlled conditions. Two experimental methods were designed for deposit generation, along with a standardized methodology for characterizing both field and laboratory-generated IDIDs. Insights from field injector analyses guided the design of test fuel blends and experiments using these new methods. The experimental results demonstrate that the composition of IDIDs varies based on the type of fuel used. Deposits from fatty acid methyl ester (FAME) biodiesel blends mainly consist of metal soaps, inorganic salts, and nitrogen compounds, likely from biodiesel degradation. In contrast,paraffinic renewable fuels, such as hydrogenated vegetable oil (HVO), tend to form deposits from fuel additives such as corrosion inhibitors and detergents, likely due to lower solvent power of the fuel. Importantly, deposits formed exclusively within the injectors, highlighting temperature as a critical factor. A laboratory thermal deposit test (TDT) was developed to explore the chemistry of these deposits and the effects of temperature and fuel contaminants. Additionally, a custom-built injector rig was created to reproduce IDIDs under engine-like conditions and test injector performance. Fullengine tests were also conducted to study soft particle formation during operation. A two-layer formation mechanism was proposed, with an inorganic calcium sulfate layer followed by an organic layer of metal soaps and additives, which was successfully reproduced in the injector set up. Engine tests revealed that soft particles form during operation with higher biodiesel blends. This work emphasizes the importance of a robust fuel system capable of handling soft particles and suggests that minimizing contaminants and maintaining high fuel quality can help reduce deposit formation. These findings support the ongoing use of drop-in fuels in advanced fuel systems. Furthermore, the thesis successfully developed specific methods to address internal injector issues and created setups for studying deposit chemistry in the laboratory, including an injector test rig for evaluating injector performance, as well as engine test operations under realworld conditions. 

Abstract [sv]

Tunga transporter är en betydande källa till utsläpp av växthusgaser. Ett sätt att minska CO2- utsläppen från denna sektor är att använda drop-in-bränslen, där alternativa bränslen används direkt eller blandas med konventionella bränslen. Dessa bränsleblandningar kan dock ha löslighetsproblem, vilket leder till utfällning av mjuka partiklar som orsakar igensättning av bränslefilter och påverkar injektors funktionalitet, vilket i sin turminskar motoreffektiviteten och ökar bränsleförbrukningen. För att möta strängare miljöregler ökar blandningsproportionerna av alternativa bränslen eftersom alltmer avancerade bränslesystem introduceras. Därför är forskning viktigt inom detta område, eftersom användningen av dropin-bränslen förväntas öka och de associerade problemen förväntas bli vanligare. Denna avhandling undersöker bildningen av interna dieselinjektorsavlagringar (IDIDs) från drop-in-bränslen och föreslår mekanismer för hur de bildas. Avhandlingen behandlar karaktärisering av avlagringar från fältinjektorer och framtagandet av experimentella metoder för att generera avlagringar under kontrollerade förhållanden. Två experimentella metoder har utvecklats för avlagringsbildning, tillsammans med en standardiserad metodik för karaktärisering av både fält- och laboratoriegenererade injektorsavlagringar. Insikter från analyser av fältinjektorer har väglett designen av testbränsleblandningar och experiment med dessa nya metoder. De experimentella resultaten visar att sammansättningen av injektoravlagringar varierar beroende på vilken typ av bränsle som används. Avlagringar från biodieselblandningar med fettsyra metyl ester (FAME) består huvudsakligen av metalltvålar, oorganiska salter och kväveföreningar, troligen från nedbrytning av biodiesel. Till skillnad så tenderar paraffiniska förnybara bränslen som hydrerad vegetabilisk olja (HVO) att bilda avlagringar från bränsletillsatser som korrosionsinhibitorer och detergenter, sannolikts på grund av bränslets lägre lösningsförmåga. Viktigt att notera är att avlagringarna bildades uteslutande inuti injektorerna, vilket markerar temperaturens roll som en kritisk faktor. Ett labbtest rigg (TDT) utvecklades för att studera kemin bakom dessa avlagringar samt effekterna av temperatur och bränsleföroreningar. Dessutom skapades en specialbyggd injektorrigg för att reproducera injektoravlagringar i motorliknande förhållanden och för att testa injektorns prestanda. Fullständiga motortester genomfördes också för att studera bildningen av mjuka partiklar under drift. En bildningsmekanism har föreslagits bestående av två lager, ett oorganiskt kalciumsulfatlager följt av ett organiskt lager av metalltvålar och tillsatser. Denna mekanism också reproducerades i injektorriggen. Motortester visade att mjuka partiklar bildas vid drift med högre biodieselblandningar. Detta arbete betonar vikten av ett robust bränslesystem som kan hantera mjuka partiklar och föreslår att låga halter av föroreningar och god bränslekvalitet kan bidra till att minska avlagringsbildning. Dessa resultat i denna forskning stöder fortsatt användning av drop-in-bränslen i avancerade bränslesystem. Dessutom har detta arbete utvecklat specifika metoder för att ta itu med interna injektorsproblem och skapat nya testmetoder i labbet för att studera avlagringskemi, en injektortestrigg för att utvärdera injektorsprestanda, samt motortestoperationer under verkliga förhållanden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 72
Series
TRITA-CBH-FOU ; 2024:54
Keywords
Fuel injection system, Soft particles, Solubility, Internal Injector Diesel Deposits, Drop-in fuels
National Category
Chemical Engineering Materials Engineering Mechanical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-356000 (URN)978-91-8106-115-4 (ISBN)
Public defence
2024-12-04, Kollegisalen, Brinellvägen 6, https://kth-se.zoom.us/webinar/register/WN_giKi2ds0SGaGmhSenJWAOg, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 35559-3
Note

QC 20241111

Available from: 2024-11-11 Created: 2024-11-07 Last updated: 2024-11-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Pach Aige, MayteKusar, HenrikEngvall, Klas

Search in DiVA

By author/editor
Pach Aige, MayteHittig, HenrikKusar, HenrikEngvall, Klas
By organisation
Process Technology
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf