kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reproducing Internal Injector Deposits Found In Heavy-Duty Vehicles With A Novel Injector Rig
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Process Technology. (Scania CV AB R&D Materials Technology)ORCID iD: 0000-0002-7332-0238
Scania CV AB R&D Materials Technology.
Scania CV AB R&D Materials Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Process Technology.ORCID iD: 0000-0002-4526-5657
Show others and affiliations
2024 (English)In: / [ed] SAE International, SAE International , 2024, Vol. 2024, article id 2404-01-4298Conference paper, Published paper (Refereed)
Abstract [en]

 In recent years, deposit formation in fuel systems for heavy-duty engines, using drop-in fuels, have become increasingly common. Drop-in fuels are particularly appealing because they are compatible with existing engines, allowing for higher proportions of alternative fuels to be blended with conventional fuels. However, the precipitation of insoluble substances from drop-in fuels can result in fuel filter clogging and the formation of internal injector deposits, leading to higher fuel consumption and issues with engine drivability. The precise reasons behind the formation of these deposits in the fuel system remain unclear, with factors such as operating conditions, fuel quality, and fuel contamination all suggested as potential contributors. In order to reproduce and study the formation of internal injector deposits, for heavy-duty engines under controlled conditions and to facilitate a more precise comparison to field trials, a novel injector test rig has been developed. This newly constructed, non-firing rig includes the main components of heavy-duty vehicle engines and uses an electric motor to simulate the revolutions per minute of an engine. A tailored run cycle has been developed to enable the continuous monitoring of injector performance during the deposit formation process, as well as to meticulously mimic the actual operations of a real engine. The deposits formed on injectors during the rig tests were analyzed using scanning electron microscopy with energy dispersive X-ray (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and pyrolysis connected to gas chromatography-mass spectroscopy (Py GC-MS). This work presents the outcome of the analysis of injector deposits using the test rig, and compares these findings with deposits gathered from field operations. The deposits obtained from the injector test rig were found to be similar in terms of deposit location, composition, and microstructure, with both sets of deposits containing metal carboxylates and derivatives of engine oil additives. These similarities demonstrate that the test rig effectively reproduces the formation of injector deposits observed in real-world conditions. 

Place, publisher, year, edition, pages
SAE International , 2024. Vol. 2024, article id 2404-01-4298
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-355989DOI: 10.4271/2024-01-4298Scopus ID: 2-s2.0-85213385702OAI: oai:DiVA.org:kth-355989DiVA, id: diva2:1911272
Conference
2024 Energy and Propulsion Conference and Exhibition SAE, November 2024, Columbus, Ohio, USA
Note

QC 20241107

Available from: 2024-11-07 Created: 2024-11-07 Last updated: 2025-01-08Bibliographically approved
In thesis
1. Internal Diesel Injector Deposits: Characterization, formation mechanisms, and replication
Open this publication in new window or tab >>Internal Diesel Injector Deposits: Characterization, formation mechanisms, and replication
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

 Heavy-duty transportation is a significant contributor to greenhouse gas emissions. One way to reduce CO2 emissions from this sector is through the use of drop-in fuels, where alternative fuels are used directly or blended with conventional fuels. However, these blends can have solubility issues, leading to precipitation of soft particles, resulting in clogged fuel filters, and disrupt injector performance, thereby reducing engine efficiency and increasing fuel consumption. As advanced fuel systems are introduced and blending proportions of alternative fuels rise to meet stricter environmental regulations, these challenges are likely to become more prevalent. Therefore, research in this area is essential, as the use of drop-in fuels is expected to grow and the associated problems are anticipated to become more common. This thesis investigates the formation of internal diesel injector deposits (IDIDs) from drop-in fuels and proposes mechanisms for their formation. The research involved characterizing deposits from field injectors and developing experimental methods to generate deposits under controlled conditions. Two experimental methods were designed for deposit generation, along with a standardized methodology for characterizing both field and laboratory-generated IDIDs. Insights from field injector analyses guided the design of test fuel blends and experiments using these new methods. The experimental results demonstrate that the composition of IDIDs varies based on the type of fuel used. Deposits from fatty acid methyl ester (FAME) biodiesel blends mainly consist of metal soaps, inorganic salts, and nitrogen compounds, likely from biodiesel degradation. In contrast,paraffinic renewable fuels, such as hydrogenated vegetable oil (HVO), tend to form deposits from fuel additives such as corrosion inhibitors and detergents, likely due to lower solvent power of the fuel. Importantly, deposits formed exclusively within the injectors, highlighting temperature as a critical factor. A laboratory thermal deposit test (TDT) was developed to explore the chemistry of these deposits and the effects of temperature and fuel contaminants. Additionally, a custom-built injector rig was created to reproduce IDIDs under engine-like conditions and test injector performance. Fullengine tests were also conducted to study soft particle formation during operation. A two-layer formation mechanism was proposed, with an inorganic calcium sulfate layer followed by an organic layer of metal soaps and additives, which was successfully reproduced in the injector set up. Engine tests revealed that soft particles form during operation with higher biodiesel blends. This work emphasizes the importance of a robust fuel system capable of handling soft particles and suggests that minimizing contaminants and maintaining high fuel quality can help reduce deposit formation. These findings support the ongoing use of drop-in fuels in advanced fuel systems. Furthermore, the thesis successfully developed specific methods to address internal injector issues and created setups for studying deposit chemistry in the laboratory, including an injector test rig for evaluating injector performance, as well as engine test operations under realworld conditions. 

Abstract [sv]

Tunga transporter är en betydande källa till utsläpp av växthusgaser. Ett sätt att minska CO2- utsläppen från denna sektor är att använda drop-in-bränslen, där alternativa bränslen används direkt eller blandas med konventionella bränslen. Dessa bränsleblandningar kan dock ha löslighetsproblem, vilket leder till utfällning av mjuka partiklar som orsakar igensättning av bränslefilter och påverkar injektors funktionalitet, vilket i sin turminskar motoreffektiviteten och ökar bränsleförbrukningen. För att möta strängare miljöregler ökar blandningsproportionerna av alternativa bränslen eftersom alltmer avancerade bränslesystem introduceras. Därför är forskning viktigt inom detta område, eftersom användningen av dropin-bränslen förväntas öka och de associerade problemen förväntas bli vanligare. Denna avhandling undersöker bildningen av interna dieselinjektorsavlagringar (IDIDs) från drop-in-bränslen och föreslår mekanismer för hur de bildas. Avhandlingen behandlar karaktärisering av avlagringar från fältinjektorer och framtagandet av experimentella metoder för att generera avlagringar under kontrollerade förhållanden. Två experimentella metoder har utvecklats för avlagringsbildning, tillsammans med en standardiserad metodik för karaktärisering av både fält- och laboratoriegenererade injektorsavlagringar. Insikter från analyser av fältinjektorer har väglett designen av testbränsleblandningar och experiment med dessa nya metoder. De experimentella resultaten visar att sammansättningen av injektoravlagringar varierar beroende på vilken typ av bränsle som används. Avlagringar från biodieselblandningar med fettsyra metyl ester (FAME) består huvudsakligen av metalltvålar, oorganiska salter och kväveföreningar, troligen från nedbrytning av biodiesel. Till skillnad så tenderar paraffiniska förnybara bränslen som hydrerad vegetabilisk olja (HVO) att bilda avlagringar från bränsletillsatser som korrosionsinhibitorer och detergenter, sannolikts på grund av bränslets lägre lösningsförmåga. Viktigt att notera är att avlagringarna bildades uteslutande inuti injektorerna, vilket markerar temperaturens roll som en kritisk faktor. Ett labbtest rigg (TDT) utvecklades för att studera kemin bakom dessa avlagringar samt effekterna av temperatur och bränsleföroreningar. Dessutom skapades en specialbyggd injektorrigg för att reproducera injektoravlagringar i motorliknande förhållanden och för att testa injektorns prestanda. Fullständiga motortester genomfördes också för att studera bildningen av mjuka partiklar under drift. En bildningsmekanism har föreslagits bestående av två lager, ett oorganiskt kalciumsulfatlager följt av ett organiskt lager av metalltvålar och tillsatser. Denna mekanism också reproducerades i injektorriggen. Motortester visade att mjuka partiklar bildas vid drift med högre biodieselblandningar. Detta arbete betonar vikten av ett robust bränslesystem som kan hantera mjuka partiklar och föreslår att låga halter av föroreningar och god bränslekvalitet kan bidra till att minska avlagringsbildning. Dessa resultat i denna forskning stöder fortsatt användning av drop-in-bränslen i avancerade bränslesystem. Dessutom har detta arbete utvecklat specifika metoder för att ta itu med interna injektorsproblem och skapat nya testmetoder i labbet för att studera avlagringskemi, en injektortestrigg för att utvärdera injektorsprestanda, samt motortestoperationer under verkliga förhållanden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 72
Series
TRITA-CBH-FOU ; 2024:54
Keywords
Fuel injection system, Soft particles, Solubility, Internal Injector Diesel Deposits, Drop-in fuels
National Category
Chemical Engineering Materials Engineering Mechanical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-356000 (URN)978-91-8106-115-4 (ISBN)
Public defence
2024-12-04, Kollegisalen, Brinellvägen 6, https://kth-se.zoom.us/webinar/register/WN_giKi2ds0SGaGmhSenJWAOg, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 35559-3
Note

QC 20241111

Available from: 2024-11-11 Created: 2024-11-07 Last updated: 2024-11-19Bibliographically approved

Open Access in DiVA

fulltext(1467 kB)79 downloads
File information
File name FULLTEXT01.pdfFile size 1467 kBChecksum SHA-512
2343c76205c65ae4dc271002bcc3967f2ef077b5f452cafa9b59aa35fc6233632ffc049bbfec6b1462bc8a65ef1f3d2644887ee19ac573cdd1329476d626c57e
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Pach Aige, MayteKusar, HenrikHruby, Sarah

Search in DiVA

By author/editor
Pach Aige, MayteKusar, HenrikHruby, Sarah
By organisation
Process Technology
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 84 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 295 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf