kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Explanation Analysis Using Rule Extraction
KTH, School of Electrical Engineering and Computer Science (EECS).
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Förklaringsanalys med hjälp av regelextraktion (Swedish)
Abstract [en]

Explainable AI (XAI) aims to enhance the transparency and interpretability of AI systems. This thesis introduces a new, post-hoc, model-agnostic method for extracting rules to improve the interpretability of complex models. The proposed approach combines several techniques, including counterfactual explanations, probabilistic reasoning, fuzzy labeling, and decision trees, to generate decision-making rules. The method addresses both local and global rule extraction. Locally, rules are derived from specific instances of data, while globally, rules are aggregated across the entire dataset. Various performance metrics, such as fidelity, hit rate, and the number of rules, are used to evaluate the method and compare it with other established approaches. Experiments conducted on multiple datasets demonstrate the method’s effectiveness in making complex models more understandable. This work provides a structured way to extract interpretable rules from AI models, contributing to the field of XAI. Future research could explore refining the method, optimizing its parameters, and applying it to a wider range of datasets.

Abstract [sv]

Förklarbar AI (XAI) syftar till att förbättra transparensen och tolkbarheten av AI-system. Denna avhandling introducerar en ny, post-hoc, modelloberoende metod för att extrahera regler för att förbättra tolkbarheten av komplexa modeller. Den föreslagna metoden kombinerar flera tekniker, inklusive kontrafaktiska förklaringar, probabilistisk resonemang, fuzzy-etikettering och beslutsträd, för att generera beslutsfattande regler. Metoden hanterar både lokal och global regelextraktion. Lokalt härleds regler från specifika instanser av data, medan globalt aggregeras regler över hela datasetet. Olika prestandamått, såsom tillförlitlighet, träffsäkerhet och antalet regler, används för att utvärdera metoden och jämföra den med andra etablerade tillvägagångssätt. Experiment utförda på flera dataset visar metodens effektivitet i att göra komplexa modeller mer förståeliga. Detta arbete ger ett strukturerat sätt att extrahera tolkbara regler från AI-modeller och bidrar till området för förklarbar AI. Framtida forskning kan utforska att förfina metoden, optimera dess parametrar och tillämpa den på ett bredare utbud av dataset.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 2024. , p. 55
Series
TRITA-EECS-EX ; 2024:693
Keywords [en]
Explainable AI, Rule extraction, Counterfactual instances, Bayes’ rule, Fuzzy labeling.
Keywords [sv]
Förklarbar AI, Regelextraktion, Kontrafaktiska instanser, Bayes regel, Fuzzy-etikettering.
National Category
Computer Sciences Computer Engineering
Identifiers
URN: urn:nbn:se:kth:diva-356216OAI: oai:DiVA.org:kth-356216DiVA, id: diva2:1912365
External cooperation
Ericsson AB
Presentation
2024-06-26, via Zoom https://kth-se.zoom.us/j/61460498242, 15:00 (English)
Supervisors
Examiners
Available from: 2025-01-21 Created: 2024-11-11 Last updated: 2025-01-27Bibliographically approved

Open Access in DiVA

fulltext(1250 kB)43 downloads
File information
File name FULLTEXT01.pdfFile size 1250 kBChecksum SHA-512
44224fcb57ac6f17e31f4d5ed363887cb58e2f4fc494a8c2dd610bf1b97e55901a081957964172b46ca5d255b1d004493e06ff01fdaa386c64f087e18367ddb9
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer SciencesComputer Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 43 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 580 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf