kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cavity optomechanics for sensing force gradients in atomic force microscopy
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Nanostructure Physics.ORCID iD: 0000-0001-7469-9975
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis we investigate force gradient sensing based on the principles of cavity optomechanics, specifically in the context of atomic force microscopy (AFM). Tip-surface forces perturb the motion of a cantilever and the cantilever's change of motion is detected with an integrated compact low-noise motion sensor based on cavity optomechanics.  

To this end we design and fabricate probes on a wafer scale. The probes consist of a cantilever in the shape of a triangular Si-N cantilever released from a substrate of Si. We fabricate low-frequency, 700 kHz, cantilevers as well as high-frequency, 5 MHz, cantilevers allowing for operation in the resolved sideband regime. At the base of the cantilever we fabricate a superconducting microwave resonant circuit (cavity) patterned from a thin film of Nb-Ti-N. The microwave circuit has a resonance frequency of 4-5 GHz. The coupling between the cantilever and the microwave circuit is based on strain modulation of the kinetic inductance of a meandering nanowire placed at the base of the cantilever. The mechanical motion can thus be detected through the modulation of the cavity resonance frequency. 

We characterise the mechanical mode as well as the microwave circuit and demonstrate the novel strain dependent coupling. We investigate the losses of the microwave circuit and find that in the temperature range 1.7-6 K the losses are not dominated by thermal-equilibrium quasi-particles. We also explore the possibility of using the nonlinear current dependence of the kinetic inductance as means to parametrically amplify the motional sidebands produced by the optomechanical interaction. Finally, with a prototype scanner assembly for low-temperature AFM we detect force gradients and image a surface implementing a two-tone pumping scheme for the microwave circuit while actuating the mechanical resonator.

Abstract [sv]

I denna avhandling undersöker vi kraftgradientavkänning baserat på principerna av optomekanik, specifikt i kontexten av atomkraftmikroskopi (AFM). Tipp-ytkrafter förändrar en vipparms rörelse. Denna förändring detekteras med hjälp av en integrerad kompakt kraftsensor med lågt brus baserat på kavitetsoptomekanik.

För detta ändamål designar och tillverkar vi sensorer på kiselplattor. Sensorerna består av triangulära Si-N vipparmar frigjorda från ett substrat av Si. Vi tillverkar låg-frekventa, 700 kHz, vipparmar såväl som hög-frekventa, 5 MHz, vipparmar där de senare placerar sensorn i den 'goda kavitetsgränsen'. Vid basen av vipparmen tillverkar vi en supraledande mikrovågsresonanskrets formad från en tunn film av Nb-Ti-N. Mikrovågskretsen har en resonansfrekvens av 4-5 GHz. Kopplingen mellan vipparmen och mikrovågskretsen är baserat på töjningmodulering av den kinetiska induktansen i den slingrande nanotråden placerad vid basen av vipparmen. Den mekaniska rörelsen kan på så sätt detekteras genom moduleringen av kavitetens resonansfrekvens.

Vi karakteriserar den mekaniska moden såväl som mikrovågskretsen och visar på den nya töjningsberoende kopplingen. Vi undersöker förlusterna av mikrovågskretsen och finner att i temperaturintervallet 1.7-6 K så domineras förlusterna inte av kvasi-partiklar i termisk jämvikt. Vi undersöker också möjligheten till att använda det icke-linjära strömberoendet från den kinetiska induktansen som medel att parametriskt förstärka rörelsesidobanden producerade från den optomekaniska interaktionen. Slutligen, med en prototyp skannerenhet för AFM vid låga temperaturer detekterar vi kraftgradienter och avbildar en yta genom att implementera ett pump-arrangemang med två toner för mikrovågskretsen samtidigt som den mekaniska resonatorn drivs.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. 84
Publication channel
978-91-8106-130-7
Series
TRITA-SCI-FOU ; 2024:56
Keywords [en]
force gradient sensing, cavity optomechanics, atomic force microscopy, kinetic inductance, superconductivity
Keywords [sv]
kraftgradientavkänning, kavitetsoptomekanik, atomkraftmikroskopi, kinetisk induktans, supraledning
National Category
Physical Sciences
Research subject
Physics, Material and Nano Physics
Identifiers
URN: urn:nbn:se:kth:diva-356559ISBN: 978-91-8106-130-7 (print)OAI: oai:DiVA.org:kth-356559DiVA, id: diva2:1914177
Public defence
2024-12-13, FD41, Roslagstullsbacken 21, AlbaNova, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ITM17-0343EU, Horizon 2020, 828966
Note

QC 2024-11-19

Available from: 2024-11-19 Created: 2024-11-18 Last updated: 2025-02-06Bibliographically approved
List of papers
1. Kinetic Inductive Electromechanical Transduction for Nanoscale Force Sensing
Open this publication in new window or tab >>Kinetic Inductive Electromechanical Transduction for Nanoscale Force Sensing
Show others...
2023 (English)In: Physical Review Applied, E-ISSN 2331-7019, Vol. 20, no 2, article id 024022Article in journal (Refereed) Published
Abstract [en]

We use the principles of cavity optomechanics to design a resonant mechanical force sensor for atomic force microscopy. The sensor is based on a type of electromechanical coupling, dual to traditional capacitive coupling, whereby the motion of a cantilever induces surface strain that causes a change in the kinetic inductance of a superconducting nanowire. The cavity is realized by a compact microwave-plasma mode with an equivalent LC circuit involving the kinetic inductance of the nanowire. The device is fully coplanar and we show how to transform the cavity impedance for optimal coupling to the transmission line and the following amplifier. For the device presented here, we estimate the bare kinetic inductive mechanoelectric coupling (KIMEC) rate g0/2π in the range 3–10 Hz. We demonstrate phase-sensitive detection of cantilever motion using a multifrequency pumping and measurement scheme.

Place, publisher, year, edition, pages
American Physical Society, 2023
National Category
Nano Technology
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-334375 (URN)10.1103/physrevapplied.20.024022 (DOI)001052945100003 ()2-s2.0-85168731329 (Scopus ID)
Funder
Swedish Foundation for Strategic Research, ITM17-0343EU, Horizon 2020, 828966
Note

QC 20230825

Available from: 2023-08-18 Created: 2023-08-18 Last updated: 2024-11-18Bibliographically approved
2. Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications
Open this publication in new window or tab >>Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications
Show others...
2024 (English)In: Beilstein Journal of Nanotechnology, E-ISSN 2190-4286, Vol. 15, p. 242-255Article in journal (Refereed) Published
Abstract [en]

We describe a transducer for low-temperature atomic force microscopy based on electromechanical coupling due to a strain-dependent kinetic inductance of a superconducting nanowire. The force sensor is a bending triangular plate (cantilever) whose deflection is measured via a shift in the resonant frequency of a high-Q superconducting microwave resonator at 4.5 GHz. We present design simulations including mechanical finite-element modeling of surface strain and electromagnetic simulations of meandering nanowires with large kinetic inductance. We discuss a lumped-element model of the force sensor and describe the role of an additional shunt inductance for tuning the coupling to the transmission line used to measure the microwave resonance. A detailed description of our fabrication is presented, including information about the process parameters used for each layer. We also discuss the fabrication of sharp tips on the cantilever using focused electron beam-induced deposition of platinum. Finally, we present measurements that characterize the spread of mechanical resonant frequency, the temperature dependence of the microwave resonance, and the sensor’s operation as an electromechanical transducer of force.

Place, publisher, year, edition, pages
Frankfurt am Main, Germany: Beilstein Institut, 2024
Keywords
atomic force microscopy, force sensing, kinetic inductance, optomechanics, superconductivity
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-343570 (URN)10.3762/bjnano.15.23 (DOI)001162781300001 ()2-s2.0-85191661029 (Scopus ID)
Note

QC 20240301

Available from: 2024-02-20 Created: 2024-02-20 Last updated: 2024-11-18Bibliographically approved
3. Temperature dependence of microwave losses in lumped-element resonators made from superconducting nanowires with high kinetic inductance
Open this publication in new window or tab >>Temperature dependence of microwave losses in lumped-element resonators made from superconducting nanowires with high kinetic inductance
Show others...
2024 (English)In: Superconductor Science and Technology, ISSN 1361-6668, Vol. 37, no 7, article id 075013Article in journal (Refereed) Published
Abstract [en]

We study the response of several microwave resonators made from superconducting NbTiN thin-film meandering nanowires with large kinetic inductance, having different circuit topology and coupling to the transmission line. Reflection measurements reveal the parameters of the circuit and analysis of their temperature dependence in the range 1.7-6 K extract the superconducting energy gap and critical temperature. The lumped-element LC resonator, valid in our frequency range of interest, allows us to predict the quasiparticle contribution to internal loss, independent of circuit topology and characteristic impedance. Our analysis shows that the internal quality factor is limited not by thermal-equilibrium quasiparticles, but an additional temperature-dependent source of internal microwave loss. 

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2024
Keywords
kinetic inductance, superconductivity, microwave resonators, mattis-bardeen
National Category
Nano Technology
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-343024 (URN)10.1088/1361-6668/ad4d5c (DOI)001248945600001 ()2-s2.0-85196036472 (Scopus ID)
Funder
EU, Horizon 2020, 828966Swedish Foundation for Strategic Research, ITM17-0343
Note

QC 20240702

Available from: 2024-02-05 Created: 2024-02-05 Last updated: 2024-11-18Bibliographically approved
4. Intrinsic Kerr amplification for microwave electromechanics
Open this publication in new window or tab >>Intrinsic Kerr amplification for microwave electromechanics
Show others...
2024 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 124, article id 243503Article in journal (Refereed) Published
Abstract [en]

Electromechanical transduction gain of 21 dB is realized in a micro-cantilever resonant force sensor operated in the unresolved-sideband regime. Strain-dependent kinetic inductance weakly couples cantilever motion to a superconducting nonlinear resonant circuit. A single pump generates motional sidebands and parametrically amplifies them via four-wave mixing. We study the gain and added noise, and we analyze potential benefits of this integrated amplification process in the context force sensitivity.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2024
Keywords
kerr nonlinearity, microwave resonators, superconductivity, kinetic inductance, four-wave mixing, parametric amplification
National Category
Nano Technology
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-343027 (URN)10.1063/5.0201936 (DOI)001248285000007 ()2-s2.0-85196043756 (Scopus ID)
Funder
EU, Horizon 2020, 828966Swedish Foundation for Strategic Research, ITM17-0343
Note

QC 20240702

Available from: 2024-02-05 Created: 2024-02-05 Last updated: 2024-11-18Bibliographically approved
5. Sensing force gradients with cavity optomechanics while evading backaction
Open this publication in new window or tab >>Sensing force gradients with cavity optomechanics while evading backaction
Show others...
2024 (English)In: Physical Review A: covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, E-ISSN 2469-9934, Vol. 110, no 4, article id 043524Article in journal (Refereed) Published
Abstract [en]

We study force-gradient sensing with a coherently driven mechanical resonator and phase-sensitive detection of motion through the two-Tone backaction evading measurement of cavity optomechanics. The response of the optomechanical system, solved by numerical integration of the classical equations of motion, shows an extended region which is monotonic to changes in force gradient. We use Floquet theory to model the fluctuations, which rise only slightly above that of the usual backaction evading measurement in the presence of the mechanical drive. The monotonic response and minimal backaction are advantageous for applications such as atomic force microscopy.

Place, publisher, year, edition, pages
American Physical Society (APS), 2024
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-356308 (URN)10.1103/PhysRevA.110.043524 (DOI)001350217700005 ()2-s2.0-85208229266 (Scopus ID)
Note

QC 20241114

Available from: 2024-11-13 Created: 2024-11-13 Last updated: 2025-03-05Bibliographically approved

Open Access in DiVA

kappa(25973 kB)214 downloads
File information
File name SUMMARY01.pdfFile size 25973 kBChecksum SHA-512
69e653fb2a8c9aca55b30e61197143fe7702e7b7aaaede4956c5fef739d1b14946fa5e5eb9f3219e8c75ac32dc68fd31d3036fc97ecac4dfcb275521b7cc87de
Type fulltextMimetype application/pdf

Authority records

Arvidsson, Elisabet

Search in DiVA

By author/editor
Arvidsson, Elisabet
By organisation
Quantum and Nanostructure Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 0 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 472 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf