kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Generative AI for Artifact Correction and Privacy-Secure Medical Imaging
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST). KTH, Centres, Science for Life Laboratory, SciLifeLab.
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Magnetic Resonance Imaging (MRI) is a widely used non-invasive technology that provides detailed visualizations of internal body structures, particularly soft tissues such as the brain, muscles, and internal organs. However, despite its crucial role in modern healthcare, MRI faces significant obstacles that limit its effectiveness. One major challenge is that MRI scans can unintentionally reveal identifiable facial features, creating potential privacy risks if this information is misused for re-identification. This raises serious concerns about data security in an increasingly digital healthcare landscape. Additionally, MRI scans require patients to remain still during imaging, as even slight movements can degrade image quality or, in severe cases, render scans unusable, leading to costly re-scans and patient discomfort.

To address these challenges, this thesis leverages generative modeling techniques using artificial neural networks. For the first challenge, we introduce a novel data-driven remodeling-based approach to visually de-identify MRI scans while preserving medically relevant information, such as the brain. Conventional methods that remove sensitive regions (e.g. the face or ears) often disrupt downstream analysis by introducing a domain shift—a significant alteration in data distribution that hampers diagnostic accuracy. Our approach generates a realistic remodeling of these sensitive areas, maintaining privacy while preserving diagnostic utility and downstream task performance.

For the second challenge, we develop techniques to remove artifacts from MRI scans, allowing the recovery of scans that would otherwise be unusable. By integrating 3D vision transformers with self-supervised and transfer learning, our methods enhance image quality while minimizing computational cost. This reduces the need for re-scanning, improves diagnostic accuracy, and enhances patient comfort by streamlining the MRI process.

Our findings highlight the transformative potential of generative modeling in medical imaging. By addressing both privacy risks and artifact removal, this research establishes new standards for secure, efficient, and precise diagnostics. With the growing integration of AI in healthcare, these innovations lay the groundwork for scalable, privacy-conscious, and accessible diagnostic practices across various imaging modalities.

Abstract [sv]

Magnetisk resonanstomografi (MRT) är en allmänt använd, icke-invasiv teknik som ger detaljerade visualiseringar av kroppens inre strukturer, särskilt mjukvävnader som hjärnan, muskler och organ. Trots sina fördelar medför MRT två kritiska utmaningar. För det första kan rekonstruktionen av 3D-bilder från enskilda bildsnitt exponera identifierbara ansiktsdrag, vilket utgör en integritetsrisk om dessa bilder missbrukas för återidentifiering genom ansiktsigenkänning eller offentliga databaser. Detta väcker allvarliga oro för datasäkerhet i ett alltmer digitaliserat hälso- och sjukvårdslandskap. För det andra kräver MRT-skanningar att patienter förblir stilla under bildtagningen, eftersom även små rörelser kan försämra bildkvaliteten eller i allvarliga fall göra skanningar oanvändbara, vilket leder till kostsamma omtagningar och obehag för patienten.

För att möta dessa utmaningar utnyttjar denna avhandling generativ modellering och artificiella neurala nätverk. För den första utmaningen presenterar vi ett nytt metod för visuell avidentifiering av MRT-skanningar genom omformning, samtidigt som medicinskt relevant information, såsom hjärnan, bevaras. Konventionella metoder som tar bort känsliga områden (t.ex. ansikte eller öron) stör ofta efterföljande analyser genom att införa en domänförskjutning – en betydande förändring i datadistributionen. Vår metod omformar integritetskänsliga områden, vilket bibehåller både integritet och diagnostisk användbarhet samt prestanda i efterföljande uppgifter.

För den andra utmaningen utvecklar vi avancerade tekniker för att ta bort rörelseartefakter från MRT-skanningar, vilket möjliggör återhämtning av skanningar som annars skulle vara oanvändbara. Genom att integrera 3D-visionstransformatorer med självlärande och transferlärande tekniker förbättrar våra metoder bildkvaliteten samtidigt som den beräkningsmässiga belastningen minimeras. Detta minskar behovet av omtagningar, förbättrar diagnostisk noggrannhet och ökar patientkomforten genom att effektivisera MRT-processen.

Våra resultat belyser den transformativa potentialen hos generativ modellering inom medicinsk bildbehandling. Genom att hantera både integritetsrisker och borttagning av artefakter etablerar denna forskning nya standarder för säkra, effektiva och precisa diagnoser. Med den växande integrationen av AI inom hälso- och sjukvården, lägger dessa innovationer grunden för skalbara, integritetsskyddande och tillgängliga diagnostiska metoder över olika bildbehandlingsmodaliteter.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. vii, 114
Series
TRITA-EECS-AVL ; 2024:89
Keywords [en]
Biomedical Imaging, Generative Modeling, Magnetic Resonance Imaging, De-identification, Privacy, Vision Transformers
Keywords [sv]
Biomedicinsk avbildning, Generativ modellering, Magnetisk resonanstomografi, Avidentifiering, Vision Transformers
National Category
Medical Imaging
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-356604ISBN: 978-91-8106-118-5 (print)OAI: oai:DiVA.org:kth-356604DiVA, id: diva2:1914607
Public defence
2024-12-13, https://kth-se.zoom.us/j/69355780837, F2, Lindstedtsvägen 16, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20241120

Available from: 2024-11-20 Created: 2024-11-20 Last updated: 2025-02-09Bibliographically approved
List of papers
1. Conditional De-Identification of 3D Magnetic Resonance Images
Open this publication in new window or tab >>Conditional De-Identification of 3D Magnetic Resonance Images
2021 (English)In: 32nd British Machine Vision Conference, BMVC 2021, British Machine Vision Association, BMVA , 2021Conference paper, Published paper (Refereed)
Abstract [en]

Privacy protection of medical image data is challenging. Even if metadata is removed, brain scans are vulnerable to attacks that match renderings of the face to facial image databases. Solutions have been developed to de-identify diagnostic scans by obfuscating or removing parts of the face. However, these solutions either fail to reliably hide the patient's identity or are so aggressive that they impair further analyses. We propose a new class of de-identification techniques that, instead of removing facial features, remodels them. Our solution relies on a conditional multi-scale GAN architecture. It takes a patient's MRI scan as input and generates a 3D volume conditioned on the patient's brain, which is preserved exactly, but where the face has been de-identified through remodeling. We demonstrate that our approach preserves privacy far better than existing techniques, without compromising downstream medical analyses. Analyses were run on the OASIS-3 and ADNI corpora.

Place, publisher, year, edition, pages
British Machine Vision Association, BMVA, 2021
National Category
Computer graphics and computer vision
Identifiers
urn:nbn:se:kth:diva-350593 (URN)2-s2.0-85176106279 (Scopus ID)
Conference
32nd British Machine Vision Conference, BMVC 2021, Virtual, Online, NA, Nov 22 2021 - Nov 25 2021
Note

QC 20240718

Available from: 2024-07-18 Created: 2024-07-18 Last updated: 2025-02-07Bibliographically approved
2. Privacy Protection in MRI Scans Using 3D Masked Autoencoders
Open this publication in new window or tab >>Privacy Protection in MRI Scans Using 3D Masked Autoencoders
2024 (English)In: 27th  International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, Springer Nature Switzerland , 2024Conference paper, Published paper (Refereed)
Abstract [en]

MRI scans provide valuable medical information, however they also contain sensitive and personally identifiable information that needs to be protected. Whereas MRI metadata is easily sanitized, MRI image data is a privacy risk because it contains information to render highly-realistic 3D visualizations of a patient's head, enabling malicious actors to possibly identify the subject by cross-referencing a database. Data anonymization and de-identification is concerned with ensuring the privacy and confidentiality of individuals' personal information. Traditional MRI de-identification methods remove privacy-sensitive parts (e.g. eyes, nose etc.) from a given scan. This comes at the expense of introducing a domain shift that can throw off downstream analyses. In this work, we propose CP-MAE, a model that de-identifies the face by remodeling it (e.g. changing the face) rather than by removing parts using masked autoencoders. CP-MAE outperforms all previous approaches in terms of downstream task performance as well as de-identification. With our method we are able to synthesize high-fidelity scans of resolution up to 256^3 -- compared to 128^3 with previous approaches -- which constitutes an eight-fold increase in the number of voxels.

Place, publisher, year, edition, pages
Springer Nature Switzerland, 2024
National Category
Computer graphics and computer vision
Identifiers
urn:nbn:se:kth:diva-356591 (URN)10.48550/arXiv.2310.15778 (DOI)
Conference
27th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, Marrekesh, Morocco, Oct 6-10 2024
Note

QC 20241120

Available from: 2024-11-19 Created: 2024-11-19 Last updated: 2025-02-07Bibliographically approved
3. Wide-Range MRI Artifact Removal with Transformers
Open this publication in new window or tab >>Wide-Range MRI Artifact Removal with Transformers
2022 (English)In: BMVC 2022 - 33rd British Machine Vision Conference Proceedings, British Machine Vision Association, BMVA , 2022Conference paper, Published paper (Refereed)
Abstract [en]

Artifacts on magnetic resonance scans are a serious challenge for both radiologists and computer-aided diagnosis systems. Most commonly, artifacts are caused by motion of the patients, but can also arise from device-specific abnormalities such as noise patterns. Irrespective of the source, artifacts can not only render a scan useless, but can potentially induce misdiagnoses if left unnoticed. For instance, an artifact may masquerade as a tumor or other abnormality. Retrospective artifact correction (RAC) is concerned with removing artifacts after the scan has already been taken. In this work, we propose a method capable of retrospectively removing eight common artifacts found in native-resolution MR imagery. Knowledge of the presence or location of a specific artifact is not assumed and the system is, by design, capable of undoing interactions of multiple artifacts. Our method is realized through the design of a novel volumetric transformer-based neural network that generalizes a window-centered approach popularized by the Swin transformer. Unlike Swin, our method is (i) natively volumetric, (ii) geared towards dense prediction tasks instead of classification, and (iii), uses a novel and more global mechanism to enable information exchange between windows. Our experiments show that our reconstructions are considerably better than those attained by ResNet, V-Net, MobileNet-v2, DenseNet, CycleGAN and BicycleGAN. Moreover, we show that the reconstructed images from our model improves the accuracy of FSL BET, a standard skull-stripping method typically applied in diagnostic workflows.

Place, publisher, year, edition, pages
British Machine Vision Association, BMVA, 2022
National Category
Other Computer and Information Science
Identifiers
urn:nbn:se:kth:diva-339294 (URN)2-s2.0-85174478681 (Scopus ID)
Conference
33rd British Machine Vision Conference Proceedings, BMVC 2022, London, United Kingdom of Great Britain and Northern Ireland, Nov 21 2022 - Nov 24 2022
Note

QC 20231106

Available from: 2023-11-06 Created: 2023-11-06 Last updated: 2024-11-20Bibliographically approved
4. MAMOC: MRI Motion Correction via Masked Autoencoding
Open this publication in new window or tab >>MAMOC: MRI Motion Correction via Masked Autoencoding
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The presence of motion artifacts in magnetic resonance imaging (MRI) scans poses a significant challenge, where even minor patient movements can lead to artifacts that may compromise the scan’s utility. This paper introduces MAsked MOtion Correction (MAMOC),a novel method designed to address the issue of Retrospective Artifact Correction (RAC)in motion-affected MRI brain scans. MAMOC uses masked autoencoding self-supervision,transfer learning and test-time prediction to efficiently remove motion artifacts, producinghigh-fidelity, native-resolution scans. Until recently, realistic, openly available paired artifactpresentations for training and evaluating retrospective motion correction methods did notexist, making it necessary to simulate motion artifacts. Leveraging the MR-ART dataset andbigger unlabeled datasets (ADNI, OASIS-3, IXI), this work is the first to evaluate motioncorrection in MRI scans using real motion data on a public dataset, showing that MAMOCachieves improved performance over existing motion correction methods.

National Category
Computer graphics and computer vision
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-356592 (URN)10.48550/arXiv.2405.14590 (DOI)
Note

QC 20241120

Available from: 2024-11-19 Created: 2024-11-19 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

kappa(16640 kB)544 downloads
File information
File name FULLTEXT01.pdfFile size 16640 kBChecksum SHA-512
1814110b8f2ddc96bca42f0f53b8ad7e2868d74b4fdcda5e51a3cfc356a165210dbac5ce4c7361e4dc5f1e2f03a6defc7b8921812b41133df348b14ec2628fee
Type fulltextMimetype application/pdf

Authority records

Van der Goten, Lennart Alexander

Search in DiVA

By author/editor
Van der Goten, Lennart Alexander
By organisation
Computational Science and Technology (CST)Science for Life Laboratory, SciLifeLab
Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
Total: 544 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1011 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf