kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermalization and Localization: Novel Perspectives from Random Circuits and the Information Lattice
KTH, School of Engineering Sciences (SCI), Physics, Condensed Matter Theory.ORCID iD: 0009-0008-8177-9218
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A many-body quantum system has the potential for entanglement between its subsystems---a form of correlation that has no equivalent in classical physics. A key feature of a many-body quantum system is the potential for entanglement between its subsystems---a form of correlation that has no equivalent in classical physics. Due to entanglement, the calculation of quantum mechanical processes generally requires resources that grow exponentially with the system size. This prevents exact simulations of generic interacting quantum systems for large system sizes and long timescales on classical computers, which leaves many questions open in this domain.

In this thesis, we investigate thermalization and localization in closed quantum systems, which are processes in which entanglement either proliferates or is exponentially suppressed. In both cases, we can make progress on classical computers by systematically discarding non-essential entanglement information to obtain approximate results that are nevertheless meaningful. We present several algorithms that follow this principle, some of which we developed from the ground up, while others improve upon existing methods.

We employ the recently developed information lattice---a spatially hierarchical decomposition of the quantum information in a state---to track the location of information over time and space, supplementing conventional measures based on the entanglement entropy. The information lattice underpins our Local Information Time Evolution (LITE) algorithm, which continually separates and discards large scale thermal information as it arises, from the local information that is relevant for physical observables. It also sheds light on the Density Matrix Renormalization Group (DMRG) algorithm, aiding our efforts to improve the convergence process when calculating highly excited states. Furthermore, we use the information lattice as the basis for a new universal characterization of quantum matter, whether thermal or localized. 

Finally, we introduce a random circuit model of interacting local integrals of motion (l-bits), to simulate the dynamics of effective quantum systems that are localized by definition. We use this model to investigate whether slow particle transport can exist in localized systems. Since the prevailing belief has been that slow particle transport is impossible in localized systems, recent numerical evidence of such transport sparked a debate as to whether localization can exist as a macroscopic phenomenon. By reproducing those results with our model, we show that the observation of slow particle transport is not sufficient to rule out the existence of localization.

Abstract [sv]

Ett kvantmekaniskt mångpartikelsystem har potential för sammanflätning mellan dess delsystem---en form av korrelation som inte har någon motsvarighet i klassisk fysik. På grund av sammanflätning kräver beräkningen av kvantmekaniska processer i allmänhet resurser som växer exponentiellt med systemets storlek. Detta förhindrar exakta simuleringar av generiska interagerande kvantsystem för stora systemstorlekar och långa tidsperioder på klassiska datorer, vilket gör att många frågor är obsevarade inom detta område.

I denna avhandling undersöker vi termalisering och lokalisering i slutna kvantsystem, vilka är processer där sammanflätningen antingen sprids eller begränsas exponentiellt. I båda fallen kan vi göra framsteg på klassiska datorer genom att systematiskt bortse från icke-väsentlig sammanflätningsinformation för att erhålla approximativa, men ändå meningsfulla, resultat. Vi presenterar flera algoritmer som följer denna princip: vissa har vi utvecklat från grunden, medan andra förbättrar befintliga metoder.

Vi använder det nyligen utvecklade informationsgittret---en hierarkisk rumslig uppdelning av kvantinformationen i ett tillstånd---för att spåra informationen över tid och rum, som ett komplement till konventionella mått baserade på sammanflätningsentropi. Informationsgittret ligger till grund för vår algoritm Local Information Time Evolution (LITE), som kontinuerligt separerar och slänger bort storskalig termisk information när den uppstår, och bevarar den lokala information som är relevant för fysiska observabler. Det ger också insikt i Density Matrix Renormalization Group (DMRG)-algoritmen, vilket hjälper oss att förbättra konvergensprocessen vid beräkning av högexciterade tillstånd. Vidare nyttjar vi informationsgittret för en ny universell karakterisering av kvantmateria, vare sig den är termisk eller lokaliserad.

Vi introducerar en slumpkretsmodell av interagerande lokala rörelsekonstanter (l-bitar), för att simulera dynamiken hos motsvarande kvantsystem som är lokaliserade per definition. Vi använder denna modell för att undersöka om långsam partikeltransport kan existera i lokaliserade system. Eftersom den rådande uppfattningen har varit att långsam partikeltransport är omöjlig i lokaliserade system, har ny numerisk evidens för sådan transport väckt en debatt om huruvida lokalisering kan existera som ett makroskopiskt fenomen. Genom att reproducera dessa resultat med vår modell visar vi att observationen av långsam partikeltransport inte är tillräcklig för att utesluta existensen av lokalisering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 2024. , p. 155
Series
TRITA-SCI-FOU ; 2024:51
Keywords [en]
Thermalization, Many-body Localization, Local Integrals of motion (l-bits), Quantum Information, Random Unitary Circuits, Excited-state DMRG.
National Category
Condensed Matter Physics
Research subject
Physics, Theoretical Physics
Identifiers
URN: urn:nbn:se:kth:diva-356733ISBN: 978-91-8106-090-4 (print)OAI: oai:DiVA.org:kth-356733DiVA, id: diva2:1915098
Public defence
2024-12-12, FB53, Roslagstullsbacken 21, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2024-11-21

Available from: 2024-11-21 Created: 2024-11-21 Last updated: 2024-11-21Bibliographically approved
List of papers
1. Ultraslow Growth of Number Entropy in an ℓ-Bit Model of Many-Body Localization
Open this publication in new window or tab >>Ultraslow Growth of Number Entropy in an ℓ-Bit Model of Many-Body Localization
Show others...
2024 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 133, no 12, article id 126502Article in journal (Refereed) Published
Abstract [en]

We demonstrate that slow growth of the number entropy following a quench from a local product state is consistent with many-body localization. To do this, we construct a novel random circuit ℓ-bit model with exponentially localized ℓ-bits and exponentially decaying interactions between them. We observe an ultraslow growth of the number entropy starting from a Néel state, saturating at a value that grows with system size. This suggests that the observation of such growth in microscopic models is not sufficient to rule out many-body localization.

Place, publisher, year, edition, pages
American Physical Society (APS), 2024
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-354274 (URN)10.1103/PhysRevLett.133.126502 (DOI)001381679500001 ()39373440 (PubMedID)2-s2.0-85204919772 (Scopus ID)
Note

QC 20250122

Available from: 2024-10-02 Created: 2024-10-02 Last updated: 2025-01-22Bibliographically approved
2. Efficient Large-Scale Many-Body Quantum Dynamics via Local-Information Time Evolution
Open this publication in new window or tab >>Efficient Large-Scale Many-Body Quantum Dynamics via Local-Information Time Evolution
Show others...
2024 (English)In: PRX Quantum, E-ISSN 2691-3399, Vol. 5, no 2, article id 020352Article in journal (Refereed) Published
Abstract [en]

During time evolution of many-body systems entanglement grows rapidly, limiting exact simulations to small-scale systems or small timescales. Quantum information tends, however, to flow towards larger scales without returning to local scales, such that its detailed large-scale structure does not directly affect local observables. This allows for the removal of large-scale quantum information in a way that preserves all local observables and gives access to large-scale and large-time quantum dynamics. To this end, we use the recently introduced information lattice to organize quantum information into different scales, allowing us to define local information and information currents that we employ to systematically discard long-range quantum correlations in a controlled way. Our approach relies on decomposing the system into subsystems up to a maximum scale and time evolving the subsystem density matrices by solving the subsystem von Neumann equations in parallel. Importantly, the information flow needs to be preserved during the discarding of large-scale information. To achieve this without the need to make assumptions about the microscopic details of the information current, we introduce a second scale at which information is discarded, while using the state at the maximum scale to accurately obtain the information flow. The resulting algorithm, which we call local-information time evolution, is highly versatile and suitable for investigating many-body quantum dynamics in both closed and open quantum systems with diverse hydrodynamic behaviors. We present results for the energy transport in the mixed-field Ising model and the magnetization transport in the XX spin chain with onsite dephasing where we accurately determine the power-law exponent and the diffusion coefficients. Furthermore, the information lattice framework employed here promises to offer insightful results about the spatial and temporal behavior of entanglement in many-body systems.

Place, publisher, year, edition, pages
American Physical Society (APS), 2024
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-347616 (URN)10.1103/PRXQuantum.5.020352 (DOI)001263233400001 ()2-s2.0-85195238530 (Scopus ID)
Note

QC 20240613

Available from: 2024-06-12 Created: 2024-06-12 Last updated: 2024-11-21Bibliographically approved
3. Universal Characterization of Quantum Many-Body States through Local Information
Open this publication in new window or tab >>Universal Characterization of Quantum Many-Body States through Local Information
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We propose a universal framework for classifying quantum states based on their scale-resolved correlation structure. Using the recently introduced information lattice, which provides an operational definition of the total amount of correlations at each scale, we define intrinsic characteristic length scales of quantum states. We analyze ground and midspectrum eigenstates of the disordered interacting Kitaev chain, showing that our framework provides a novel unbiased approach to quantum matter.

National Category
Condensed Matter Physics
Research subject
Physics, Theoretical Physics
Identifiers
urn:nbn:se:kth:diva-356729 (URN)10.48550/ARXIV.2410.10971 (DOI)
Funder
EU, European Research Council, 101001902Knut and Alice Wallenberg Foundation, 2019.0068Wenner-Gren FoundationsNational Academic Infrastructure for Supercomputing in Sweden (NAISS), 2022-06725
Note

QC 20241121

Available from: 2024-11-21 Created: 2024-11-21 Last updated: 2024-11-21Bibliographically approved

Open Access in DiVA

fulltext(2750 kB)154 downloads
File information
File name FULLTEXT01.pdfFile size 2750 kBChecksum SHA-512
c44f8ce3d114a470fa869b96dbe055c9b83a52bce95449010e596f9e746be846057cf0501d205f66811a38bac1fc2c163f2b19706cf945b6ed309b0accc62f50
Type fulltextMimetype application/pdf

Authority records

Aceituno Chavez, David

Search in DiVA

By author/editor
Aceituno Chavez, David
By organisation
Condensed Matter Theory
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 154 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2565 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf