kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Integrating Self-Organizing Map and Graph Neural Networks to Detect Anomalies in Time-series Data
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.ORCID iD: 0000-0002-8028-3607
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.ORCID iD: 0000-0003-0061-3475
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.ORCID iD: 0000-0001-7048-0108
2024 (English)In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, p. 1-1Article in journal (Refereed) Epub ahead of print
Abstract [en]

Anomaly detection is essential in Industrial Cyber-Physical Systems (ICPS) for monitoring both system and environmental conditions. However, effective anomaly detection remains a continuous challenge due to the complexity and diversity of operational features in both spatial and temporal domains of such systems. Current data-driven approaches utilize Artificial Intelligence (AI)-enabled methods, such as Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN), to process and analyze the collected operational data. From the industrial perspective, a key challenge lies in enhancing the effectiveness and explainability, as these methods often exhibit opaque and sophisticated network structures when dealing with complex operational data. Meanwhile, recent advancements in Graph Neural Networks (GNN) demonstrate its effectiveness of supporting the analysis of complex relationships and dependencies. The adoption of GNN poses however inherent challenges when the data are unstructured. This paper designs a novel framework that integrates Self-Organizing Maps (SOM) and GNN for the analysis of complex operational relationships and dependencies. In particular, the adoption of SOM allows the generation graph-structured data from unstructured raw datasets and thereby enhances a GNN’s ability to differentiate normal and anomalous conditions effectively. As case studies, we select multiple public datasets to compare the performance of the proposed framework with other benchmark methods. The results show that the proposed methods present promising results. Additionally, compared to other baseline methods that use GNN-based structures to detect anomalies, the proposed framework achieves the highest F1-Score.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2024. p. 1-1
National Category
Computer Engineering
Identifiers
URN: urn:nbn:se:kth:diva-357661DOI: 10.1109/jsen.2024.3509632Scopus ID: 2-s2.0-85212300113OAI: oai:DiVA.org:kth-357661DiVA, id: diva2:1920415
Note

QC 20241216

Available from: 2024-12-11 Created: 2024-12-11 Last updated: 2025-03-20Bibliographically approved
In thesis
1. Supporting Self-Management in Cyber-Physical Systems by Combining Data-driven and Knowledge-enabled Methods
Open this publication in new window or tab >>Supporting Self-Management in Cyber-Physical Systems by Combining Data-driven and Knowledge-enabled Methods
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cyber-Physical Systems (CPS) refer to intelligent systems that combine computational and physical capabilities to enable advanced functionalities, such as autonomous behaviors, human-machine interaction, and machine collaboration in complex environments. Addressing these functionalities often necessitates the adoption of Artificial Intelligence (AI) techniques which are extensively utilized for operational perception and decision-making. However, due to the inherently data-intensive and opaque nature of most AI-enabled components, combined with unforeseen environments, the integration of AI-enabled techniques into CPS presents significant engineering challenges in quality management. Self-management, as an embedded system feature, extends conventional CPS with capabilities for operation monitoring, planning and adaptation. It is often considered as a necessary mechanism for ensuring the quality and trustworthiness of AI-enabled components. However, implementing self-management in AI-enabled CPS presents several challenges: The concept of self-management varies depending on the audience and application, making its definition and implementation more complex. Additionally, the data-intensive nature of AI-enabled components requires extra effort to ensure consistent performance across operational domains, especially under unforeseen conditions. To cope with these challenges, this thesis proposes to integrate data-driven and knowledge-enabled methods for self-management through the following efforts: 1) Proposing conceptual frameworks that define the necessary and sufficient functionalities for self-management, with the support for situation awareness regarding the internal and environmental conditions; 2) Developing condition monitoring modules within the proposed conceptual frameworks for the situation-awareness to analyze system status; 3) Creating human-explainable data-driven methods for understanding operational conditions; 4) Designinglearning-based agents to dynamically and effectively address vulnerabilities inAI-enabled systems that could lead to system failures or compromise the operational safety. This thesis consolidates key concepts and introduces novel features for self-management in CPS by synthesizing insights from existing research and addressing their limitations. It provides a framework for designing learning based agents that leverage data synthesis to achieve self-management. Additionally, the thesis develops data-driven methods integrated with knowledge enabled models to enhance situation awareness and trustworthiness, effectively addressing the complexity and opacity of AI-enabled computing processes.

Abstract [sv]

Cyberfysiska system (CPS) är intelligenta system som kombinerar beräknings-mässiga och fysiska förmågor för att möjliggöra avancerade funktioner, som autonoma beteenden, interaktion mellan människa och maskin och maskinsamarbete i komplexa miljöer. För att hantera dessa funktionaliteter används ofta artificiell intelligens (AI), särskilt inom operativ perception och beslutsfattande. Men på grund av att de flesta AI-komponenter är dataintensiva och svårgenomtränglig, i kombination medoförut-sedda miljöer, innebär integrationen av AI-komponenter i CPS betydande tekniska utmaningar när det gäller kvalitetshantering.

Självförvaltning, som en inbyggd systemfunktion, utökar konventionella CPS med funktionaliteter för driftsövervakning, planering och anpassning. Den anses ofta vara en nödvändig mekanism för att säkerställa kvaliteten och pålitligheten hos AI-komponenter.

Att implementera självförvalt-ning i AI-aktiverade CPS innebär dock flera utmaningar: Begreppet tolkas olika beroende på målgrupp och tillämpning, vilket gör definitionen och implementeringen mer komplex. Dessutom kräver AI-komponenter ofta extra ansträngningar för att säkerställa konsekvent prestanda över olika operativa domäner, särskilt under oförutsedda förhållanden.

 

För att adressera dessa utmaningar föreslår denna avhandling en integrering av datadrivna och kunskapsbaserade metoder för självförvaltning genom följande insatser: 1) Utveckling av konceptuella ramverk som definierar de nödvändiga och tillräckliga funktionerna för autonom hantering, med stöd för situationsmedvetenhet om både interna och externa förhållandena; 2) Implementering av tillståndsövervakningsmoduler inom de föreslagna konceptuella ramverken för att analysera systemstatus och förbättra situationsmedvetenheten; 3) Skapande av förklarbara datadrivna metoder som möjliggör en bättre förståelse av operativa förhållanden; 4) Design av inlärningsbaserade agenter för att dynamiskt och effektivt hantera sårbarheter i AI-baserade system, förebygga systemfel och säkerställa driftsäkerhet.

Denna avhandling samlar nyckelbegrepp och introducerar nya funktioner för autonom hantering i cyberfysiska system genom att sammanställa insikter från befintliga studier och adressera deras begränsningar. Den presenterar ett ramverk för att utforma inlärningsbaserade agenter som utnyttjar datasyntes för att uppnå autonom hantering. Vidare utvecklas datadrivna metoder som kombineras med kunskapsbaserade modeller för att förbättra situationsmedvetenhet och pålitlighet, samtidigt som de komplexa och svårgenomträngliga databehandlingsprocesserna i AI-drivna komponenter hanteras.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 83
Series
TRITA-ITM-AVL ; 2025:9
Keywords
Cyber-Physical Systems, Artificial Intelligence, Deep Learning
National Category
Engineering and Technology
Research subject
Machine Design
Identifiers
urn:nbn:se:kth:diva-361423 (URN)978-91-8106-234-2 (ISBN)
Public defence
2025-04-10, M1 / https://kth-se.zoom.us/j/62678100345, Brinellvägen 64 A, Stockholm, 09:00 (English)
Opponent
Supervisors
Available from: 2025-03-20 Created: 2025-03-19 Last updated: 2025-04-08Bibliographically approved

Open Access in DiVA

fulltext(6684 kB)93 downloads
File information
File name FULLTEXT01.pdfFile size 6684 kBChecksum SHA-512
12257605fb5cb867e8fad74666b6de907e399b512c97cec15f96613e38687b39eb674a6ea22a06cc79f33e649b01bf7a5dedfcda243375a0a52b9e9072849f13
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Su, PengLu, ZhonghaiChen, Dejiu

Search in DiVA

By author/editor
Su, PengYuan, HengzhenLu, ZhonghaiChen, Dejiu
By organisation
Mechatronics and Embedded Control SystemsElectronics and Embedded systems
In the same journal
IEEE Sensors Journal
Computer Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 93 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 103 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf