kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Signal Processing and Antenna Design for Sub-Terahertz Radar Using Frequency: Diverse and Scanning Notch-Beam Antennas
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0002-3050-7705
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis explores the design, fabrication, characterization, and performance of frequency-diverse antennas and frequency-scanning notch-beam antennas for high-resolution radar detection and imaging at sub-THz frequencies ranging from 220 to 330 GHz. 

Utilizing cutting-edge silicon micromachining techniques, the body of work presents innovative solutions that address the challenges of high-resolution radar imaging, focusing on improving imaging performance, reducing hardware complexity, and enhancing signal processing techniques.

At the heart of this research is analyzing, characterizing, and evaluating a minimalistic beam-shape switching frequency-scanning notch and broad-beam radar systems. A two-antenna system was designed to switch between broad and notch beam patterns, improving imaging resolution and hardware efficiency. The system's ability to operate with fewer components while maintaining high performance was further augmented through advanced signal processing algorithms like TwIST and MUSIC, which offered superior image reconstruction in noisy scenarios.

A key aspect of this research was the experimental validation of the scanning notch antenna, which demonstrated its capability for sub-THz imaging. This work evaluated various algorithms, including FISTA, MUSIC, and matched filter methods, highlighting MUSIC's limitations when multiple targets were present. To overcome the challenge of multi-target scenario failure, a novel adaptive IFFT range-gating method was introduced, which markedly enhanced the radar’s ability to distinguish closely spaced targets by separating the return signals more effectively.

Further advancing in sub-THz imaging systems, we explored designing and fabricating a Mills-cross frequency-diverse antenna using slot radiators and a direct waveguide feed network. This configuration allows for efficient radiation pattern diversity over the operating bandwidth, contributing to enhanced imaging resolution without complex mechanical scanning or phase shifters. 

Following this, we developed a more advanced wideband frequency-diverse antenna for 220 to 330 GHz, featuring an array of silicon-micromachined cross-slot radiators. The frequency-diverse antenna using a cross-slot is incorporated with direct and distributed feed networks. This configuration, which utilizes cross-slot radiators and a distributed feed network, significantly improved radiation pattern diversity and imaging resolution. The performance of these frequency-diverse antennas was evaluated using advanced imaging algorithms, with FISTA and CoSaMP emerging as the preferred algorithms for efficient, high-resolution image reconstruction under various noise conditions. These antennas are designed for short-range, high-resolution imaging and eliminate the need for phase shifters or mechanical scanning, achieving diverse radiation patterns across a broad frequency range.

Finally, this work culminated in a detailed investigation of imaging performance using these frequency-diverse antennas, where the comparison of direct and distributed feed networks provided key insights into optimizing feed designs for enhanced imaging quality and spatial resolution. Furthermore, we investigated the influence of sparse data collection on imaging performance, considering sparsity in three major areas: 1) when the imaging antenna array is sparsely populated, 2) when sparse frequency sampling is applied across the total available bandwidth, and 3) when the bandwidth is divided among multiple transmitters, each operating over a partial bandwidth, while the receiver utilizes the full bandwidth. 

These scenarios provided a comprehensive understanding of how sparsity affects overall imaging performance and resolution, enabling more efficient data acquisition without compromising image quality.

This thesis substantially contributes to advancing sub-THz radar detection and computational imaging. By integrating innovative antenna designs, adaptive signal processing techniques, and advanced fabrication methods, this research presents a comprehensive solution for achieving high-resolution radar imaging with minimal hardware complexity, paving the way for practical applications in security, medical diagnostics, and structural monitoring.

Abstract [sv]

Denna avhandling utforskar design, tillverkning, karakterisering och prestanda hos frekvensdiverse antenner och frekvensskannande notchstråleantenner för högupplöst radardetektion och avbildning vid sub-THz-frekvenser i intervallet 220 till 330 GHz.

Genom att använda banbrytande kiselmikromaskineringstekniker presenterar arbetet innovativa lösningar som adresserar utmaningar inom högupplöst radaravbildning, med fokus på att förbättra avbildningsprestanda, minska hårdvarukomplexiteten och stärka signalbehandlingstekniker.

Kärnan i denna forskning är att analysera, karakterisera och utvärdera minimalistiska system med strålformsväxling i frekvensskannande notch- och bredstråleradarsystem. Ett system med två antenner designades för att växla mellan breda och smala strålmönster, vilket förbättrade avbildningsupplösning och hårdvarueffektivitet. Systemets förmåga att arbeta med färre komponenter samtidigt som hög prestanda bibehålls, förstärktes ytterligare genom avancerade signalbehandlingsalgoritmer som TwIST och MUSIC, vilka erbjöd överlägsen bildrekonstruktion i bullriga miljöer.

En viktig aspekt av denna forskning var experimentell validering av den skannande notch-antennen, som visade sin kapacitet för sub-THz-avbildning. Arbetet utvärderade olika algoritmer, inklusive FISTA, MUSIC och matched filter-metoder, och framhöll MUSICbegränsningar när flera mål var närvarande. För att övervinna utmaningen i scenarion med flera mål introducerades en ny adaptiv IFFT-range-gating-metod, som avsevärt förbättrade radarens förmåga att särskilja tätt placerade mål genom att effektivare separera de mottagna signalerna.

Vidareutveckling inom sub-THz-avbildningssystem utforskades genom design och tillverkning av en Mills-cross frekvensdivers antenn med slot-radiatorer och en direktvågledarförsörjningsnät. Denna konfiguration möjliggör effektiv diversitet i strålningsmönster över arbetsbandbredden, vilket bidrar till förbättrad avbildningsupplösning utan komplex mekanisk skanning eller fasskiftare.

Därefter utvecklade vi en mer avancerad bredbands frekvensdivers antenn för 220 till 330 GHz, med en array av kiselmikromaskinerade korsslitsradiatorer. Den frekvensdiversa antennen med korsslits kombineras med direkt och distribuerat matningsnätverk. Denna konfiguration, som använder korsslitsradiatorer och ett distribuerat matningsnätverk, förbättrade avsevärt strålningsmönsterdiversiteten och avbildningsupplösningen. Prestandan hos dessa frekvensdiverse antenner utvärderades med avancerade avbildningsalgoritmer, där FISTA och CoSaMP visade sig vara de föredragna algoritmerna för effektiv, högupplöst bildrekonstruktion under olika brusförhållanden. Dessa antenner är utformade för kortdistans och högupplöst avbildning och eliminerar behovet av fasskiftare eller mekanisk skanning, vilket uppnår olika strålningsmönster över ett brett frekvensområde.

Slutligen resulterade detta arbete i en detaljerad undersökning av avbildningsprestanda med dessa frekvensdiverse antenner, där jämförelsen av direkt och distribuerade matningsnätverk gav viktiga insikter för att optimera matningsdesigner för förbättrad bildkvalitet och rumslig upplösning. Dessutom undersökte vi inverkan av gles datainsamling på avbildningsprestanda, med hänsyn till gleshet i tre huvudsakliga områden: 1) när antennarrayen för avbildning är glesbefolkad, 2) när gles frekvenssampling appliceras över den tillgängliga bandbredden, och 3) när bandbredden delas mellan flera sändare, var och en som arbetar över en del av bandbredden, medan mottagaren använder hela bandbredden.

Dessa scenarier gav en omfattande förståelse för hur gleshet påverkar den övergripande avbildningsprestandan och upplösningen, vilket möjliggör effektivare datainsamling utan att kompromissa med bildkvaliteten.

Denna avhandling bidrar avsevärt till att driva fram sub-THz radardetektion och datorbaserad avbildning. Genom att integrera innovativa antenndesigner, adaptiva signalbehandlingstekniker och avancerade tillverkningsmetoder presenterar denna forskning en heltäckande lösning för att uppnå högupplöst radaravbildning med minimal hårdvarukomplexitet, vilket banar väg för praktiska tillämpningar inom säkerhet, medicinsk diagnostik och strukturell övervakning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. ix, 98
Series
TRITA-EECS-AVL ; 2025:2
Keywords [en]
Radar, Computational Imaging, Antenna, Frequency Beam Scanning, Frequency Diverse Antenna, Compressed Sensing, Sub-THz, Silicon-Micromachining, Wideband
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-357769ISBN: 978-91-8106-171-0 (print)OAI: oai:DiVA.org:kth-357769DiVA, id: diva2:1921649
Public defence
2025-01-23, F3, Lindstedtsvägen 26 & 28, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20241218

Available from: 2024-12-18 Created: 2024-12-16 Last updated: 2025-01-13Bibliographically approved
List of papers
1. Analysis of a Minimalistic Imaging Radar Concept Employing Beam Shape Switching and Compressed Sensing
Open this publication in new window or tab >>Analysis of a Minimalistic Imaging Radar Concept Employing Beam Shape Switching and Compressed Sensing
2024 (English)In: IEEE Transactions on Geoscience and Remote Sensing, ISSN 0196-2892, E-ISSN 1558-0644, Vol. 62, article id 2003812Article in journal (Refereed) Published
Abstract [en]

This research investigates a unique radar concept based on a frequency-sweeping stepped-frequency continuous-wave (SFCW) radar with a two-element antenna array. The suggested array can switch between a notched and a broad beam shape. Regarding target discrimination and locating accuracy, we compare this radar system to three-element and four-element frequency-sweeping SFCW radars. Compressed sensing methods are used to reconstruct images and evaluate the performance of various antenna arrays. The range resolution for the proposed two-element beam shape switching antenna system with a bandwidth of 10 GHz is noteworthy-10 mm for point targets and 20 mm for extended targets. This range resolution is two times that of the larger aperture three-element array and four times that of the four-element array. Notably, the range resolution beats the theoretical range resolution due to the use of compressed sensing to combine information from the two beam shapes. Furthermore, the suggested system outperforms previous antenna arrays regarding angular resolution, especially when targets are close in range and angle. With a 10 mm range distance and a 2(degrees )angle difference, the system effectively discriminates three targets. In a triple-target scenario, the suggested two-element beam shape switching system outperforms a standard four-element phased array radar with the same bandwidth even with restricted computational resources.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
Keywords
Radar, Radar antennas, Antenna arrays, Shape, Phased arrays, Bandwidth, Radar imaging, Beam shape, compressed sensing, frequency sweeping, notched beam
National Category
Communication Systems
Identifiers
urn:nbn:se:kth:diva-346300 (URN)10.1109/TGRS.2024.3383223 (DOI)001200182800008 ()2-s2.0-85189499882 (Scopus ID)
Note

QC 20240513

Available from: 2024-05-13 Created: 2024-05-13 Last updated: 2024-12-20Bibliographically approved
2. Experimental Validation of a Notch-Beam and Frequency-Scanning Sub-THz Radar
Open this publication in new window or tab >>Experimental Validation of a Notch-Beam and Frequency-Scanning Sub-THz Radar
Show others...
2024 (English)In: IEEE Transactions on Terahertz Science and Technology, ISSN 2156-342X, E-ISSN 2156-3446, Vol. 14, no 6, p. 865-873Article in journal (Refereed) Published
Abstract [en]

This article experimentally demonstrates a frequency-sweeping notch-beam sub-THz radar frontend based on a two-line array antenna featuring computational imaging. Operating within 237.5 GHz and 250 GHz with 12.5 GHz bandwidth, the radar utilizes a 12 λc delay line to achieve frequency-sweeping capabilities. This configuration allows dynamic notch-beam scanning across angular ranges from − 26.5 ∘ to 28 ∘ . The radar frontend is highly compact with a total size of 20 mm× 14.3 mm× 1.2 mm, including the beam-steering network, a magic-tee for creating the 180 ∘ phase shift required for creating the notch-beam, and the antenna array, and is implemented by silicon micromachining. The radar was evaluated with single and dual-target scenarios utilizing and benchmarking different computational imaging algorithms, i.e., matched filter (MF), fast iterative shrinkage-thresholding algorithm (FISTA), and multiple signal classification (MUSIC). It was found that the MUSIC algorithm outperforms MF and FISTA in range and angular resolution in single-target scenes, achieving a range resolution of 7.8 mm and an angular resolution of 15.7 ∘ , with detection errors of less than 6.6 mm and 3.5 ∘ , respectively. Although the MUSIC algorithm maintains reliable range resolution in dual-target scenarios, it performs poorly in providing angular information.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
National Category
Telecommunications
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-357771 (URN)
Note

QC 20241216

Available from: 2024-12-17 Created: 2024-12-17 Last updated: 2024-12-20Bibliographically approved
3. Enhanced Imaging Performance Using Adaptive IFFT Range-Gating Method for a Frequency-Scanning Notch-Beam Sub-THz Radar
Open this publication in new window or tab >>Enhanced Imaging Performance Using Adaptive IFFT Range-Gating Method for a Frequency-Scanning Notch-Beam Sub-THz Radar
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This paper presents a novel adaptive IFFT range-gating method for enhanced radar imaging performance, validated experimentally using a minimalistic frequency-scanning notch-beam radar frontend operating at sub-THz frequencies. Since the bandwidth is utilized to derive both the range and angular information in a frequency-scanning radar, the proposed technique is particularly effective in improving the performance of frequency-scanning types of radars. The frequency-steeringantenna covers an angular range of -26.5 ◦ to 28◦ within the237.5 to 250 GHz frequency range, with 12.5 GHz of bandwidth. The performance enhancement of the proposed adaptive IFFT range-gating method is evaluated using different computational imaging algorithms, such as Matched Filter, FISTA, and MUSIC. The experimental verification indicates that the adaptive IFFT algorithm performs best, achieving an angle error with a root mean square error (RMSE) of only 1.58◦. In addition, combining the MUSIC algorithm with the adaptive IFFT significantly improves angular RMSE, reducing it from 10.11◦ to 4.9◦. Besides, utilizing the adaptive IFFT method combined with MF and FISTA further improves their performance. Furthermore, this paper mathematically demonstrates that the optimal beam-shape configuration for the proposed imaging radar system is to use a frequency-scanning notch-beam as the receiver and a fixed broad-beam as the transmitter, outperforming other combinations of beam shapes.

Keywords
Radar, compressed sensing, beam shape, frequency scanning, notch-beam
National Category
Signal Processing
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-357643 (URN)
Funder
Swedish Foundation for Strategic Research, CHI 19-0027
Note

QC 20241216

Available from: 2024-12-11 Created: 2024-12-11 Last updated: 2025-01-13Bibliographically approved
4. Silicon-Micromachined Wideband Sub-THz Frequency-Diverse Antenna
Open this publication in new window or tab >>Silicon-Micromachined Wideband Sub-THz Frequency-Diverse Antenna
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This paper presents the first compact, wideband,silicon-micromachined frequency-diverse antenna, operating across the 220-330 GHz range, designed explicitly for sub-THzimaging applications. The antenna consists of 80 slot radiating elements of twelve distinct sizes corresponding to half of the uniformly sampled wavelengths within the operating bandwidth. These elements are arranged in a Mills-Crossconfiguration for antenna designs A and B, supported by an innovatively shaped air-filled cavity. The cavity is engineered to support multiple higher-order, high-Q resonance modes, generating highly frequency-diverse, pseudo-random radiation patterns. The frequency-diverse antenna is fed by a three-sectionimpedance-matching transitional direct waveguide and isfabricated using advanced silicon micromachining technology. This paper comprehensively analyzes the antenna’s radiation patterns and impedance matching across the entire waveguide band. The compact prototype, with an overall size of 18mm × 16 mm × 0.933 mm (effective antenna dimensions of11λ×11λ×0.85λ), is the most compact air-filled, cavity-backed frequency-diverse antenna reported to date. It demonstrates high radiation efficiency and is designed for direct mounting on a standard WR-3.4 waveguide flange. The antenna achieves a fractional bandwidth of 34%, with a return loss better than 10 dB, extending to 40% with a return loss better than 5 dB.

Keywords
Sub-THz, wideband antenna, frequency-diverse antenna, Cavity-backed antenna
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-357644 (URN)
Funder
Swedish Foundation for Strategic Research, CHI19-0027
Note

QC 20241216

Available from: 2024-12-11 Created: 2024-12-11 Last updated: 2024-12-20Bibliographically approved
5. Silicon-Micromachined THz Frequency-Diverse Antenna with Enhanced Pattern Independence Enabled by Distributed Feed
Open this publication in new window or tab >>Silicon-Micromachined THz Frequency-Diverse Antenna with Enhanced Pattern Independence Enabled by Distributed Feed
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This paper presents the design, fabrication, and evaluation of a compact, dual-polarized, wideband, sub-THz frequency-diverse antenna with a novel distributed feed configuration and cross-slot radiation elements implemented by silicon-micromachining. The distributed feed is based on a spiral-shaped waveguide network with multiple Morenocross-couplers for stimulating the overloaded resonance cavity backing the antenna with 140 cross-slot radiation elements optimized for 16 frequencies, which generates pseudo-random radiation patterns over the full waveguide bandwidth of 220–330GHz, with applications to sub-THz imaging. As experimentally verified by comparisons of prototype devices, one with the novel distributed feed and a reference design with an optimized conventional direct feed, the novel feed design reduces the radiation pattern dependence over frequency by at least 48.5%, and up to 83.4%, over the entire frequency range. This clearly demonstrates the effectiveness of the novel distributed feed structure and implies, to a sub-THz imaging system, an improvement of the resolution or a reduction of the necessary number of measurements. Additionally, the distributed feed significantly improves the spatial coverage of the radiation patterns, as demonstrated in the paper. The overall design is very compact, with an active volume of 11×11×0.85λ3c, including the cavity, and the distributed feeding network. The measured return loss of the antenna with the distributed feed is better than 10 dB across the operating bandwidth.

National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-357645 (URN)
Funder
Swedish Foundation for Strategic Research, CHI19-0027
Available from: 2024-12-11 Created: 2024-12-11 Last updated: 2024-12-20
6. Investigating Sub-THz Computational Imaging Using Silicon Micromachined Frequency-Diverse Antennas
Open this publication in new window or tab >>Investigating Sub-THz Computational Imaging Using Silicon Micromachined Frequency-Diverse Antennas
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This paper investigates sub-THz computational imaging using compact, wideband, cavity-backed frequency-diverse antennas fabricated through silicon micromachining techniques. This paper presents a forward model based on pseudo-random frequency-diverse patterns using a Mills-Cross transmitter and receiver pair, which provides high-resolution imaging capabilities in the 220-330 GHz frequency range. The model is coupled with advanced compressed sensing algorithms, specifically Compressive Sampling Matching Pursuit (CoSaMP)and Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), to enhance imaging performance under limited data acquisition. Through emulated simulation and experimental data, the system’s ability to achieve range resolutions down to 1.4 mm and angular resolutions of 0.35°, even in the presence of noise, and analyzes the trade-off between computational complexity and imaging accuracy. Sparsity investigation in spatial antenna population and frequency samples are comprehensively explored in this paper. The results show using only 6.7% of the data, the CoSaMP algorithm can reconstruct a discernable image of the KTH logo. Results show that CoSaMP provides lower reconstruction error for sparse target distributions, while FISTA achieves superior noise resilience. The study highlights the practical implications of using frequency-diverse antennas in security screening and industrial inspection, where high-resolution imaging at sub-THz frequencies is demanded.

Keywords
Sub-THz imaging, frequency-diverse antenna, silicon micromachining
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-357646 (URN)
Funder
Swedish Foundation for Strategic Research, CHI19-0027
Note

QC 20250103

Available from: 2024-12-11 Created: 2024-12-11 Last updated: 2025-01-03Bibliographically approved
7. Computational Imaging Improvement of Dual-Polarization Frequency-Diverse Antennas at Sub-THz
Open this publication in new window or tab >>Computational Imaging Improvement of Dual-Polarization Frequency-Diverse Antennas at Sub-THz
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This paper explores novel aspects of sparsity in sub-THz computational imaging using dual-polarization, wideband,frequency-diverse antennas fabricated through silicon micro-machining techniques. These antennas—one with a distributed feed and the other with a direct feed—operate at 220-330GHz frequency range, generating pseudo-random radiation patterns. This makes them well-suited for high-resolution imaging with reduced hardware complexity compared to traditional radar imaging setups. A forward model based on these antennas' radiation patterns is integrated with compressed sensing techniques, specifically the Compressive Sampling MatchingPursuit (CoSaMP) and Fast Iterative Shrinkage-ThresholdingAlgorithm (FISTA). The computational imaging investigation, involving three configurations of the two antennas, shows that deploying the distributed feed antenna significantly enhances imaging performance in scenarios with sparse measurement data. Furthermore, the paper comprehensively investigates two types of sparsity: the number of Tx-Rx measurements and sub-bandwidth division. Sparsity analysis on several emulation results reveals that under high SNR conditions, using only the distributed feed antenna as both Tx and Rx requires just 25% of the measured data to successfully reconstruct an image of the scene. Additionally, the sub-bandwidth allocation technique drastically reduces the complexity of wideband hardware, requiring only 2% of the data when using the distributed feed antenna. The system demonstrates impressive performance through both simulations and experimental validation, achieving range resolutions as satisfactory as 1.4 mm and angular resolutions down to 0.35°.

Keywords
Sub-THz imaging, frequency-diverse antenna, silicon micromachining, antenna design.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-357647 (URN)
Funder
Swedish Foundation for Strategic Research, CHI19-0027
Note

QC 20241216

Available from: 2024-12-11 Created: 2024-12-11 Last updated: 2024-12-20Bibliographically approved

Open Access in DiVA

fulltext(82683 kB)99 downloads
File information
File name FULLTEXT01.pdfFile size 82683 kBChecksum SHA-512
7469d5885f85c3da3e978bde48363c87d054984b11838b64d207ba53c3cbf75e5940affe1341f7cfd21a31a1e0a0e80e4bfee0401271955afbbfbbc3bdb6eac4
Type fulltextMimetype application/pdf

Authority records

Seidi Goldar, Mohammad-Reza

Search in DiVA

By author/editor
Seidi Goldar, Mohammad-Reza
By organisation
Micro and Nanosystems
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 99 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 576 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf